(1) a+2b+3c=12 (2) 2ab+3ac+6bc=48 Solve (1) for 3c 3c = 12-a-2b Write (2) as 2ab+a(3c)+2b(3c) = 48 Substitute 12-a-2b for 3c 2ab+a(12-a-2b)+2b(12-a-2b) = 48 2ab+12a-a^2-2ab+24b-2ab-4b^2 = 48 -a^2-2ab+12a-4b^2+24b-48 = 0 a^2+2ab-12a+4b^2-24b+48 = 0 a^2+2ab-12a+4b^2-24b+48 = 0 a^2+(2b-12)a+4b^2-24b+48 = 0 Calculate the discriminant B^2-4AC with A=1, B=2b-12, C=4b^2-24b+48 B^2-4AC = (2b-12)^2-4(1)(4b^2-24b+48) = (2b-12)^2-4(4b^2-24b+48) = 4b^2-48b+144-16b^2+96b-192 = -12b^2+48b-48 = -12(b^2-4b-4) = -12(b-2)^2 In order for this discriminant to be non-negative, it must be 0 -12(b-2)^2 = 0 (b-2)^2 = 0 b = 2 Substitute b=2 in (1) a+2b+3c = 12 a+2(2)+3c = 12 a+4+3c = 12 a+3c = 8 (3) a = 8-3c Substitute b=2 in (1) 2ab+3ac+6bc = 48 2a(2)+3ac+6(2)c = 48 (4) 4a+3ac+12c = 48 Substitute 8-3c for a in (4) 4(8-3c)+3(8-3c)c+12c = 48 4(8-3c)+3c(8-3c)+12c = 48 32-12c+24c-9c^2+12c = 48 -9c^2+24c+32 = 48 -9c^2+24c-16 = 0 9c^2-24c+16 = 0 (3c-4)(3c-4) = 0 3c-4 = 0 3c = 4 c = 4/3 (3) a = 8-3c a = 8-3(4/3) a = 8-4 a = 4 So a=4, b=2, c=4/3 Answer a+b+c = 4+2+4/3 = 12/3+6/3+4/3 = 22/3 Edwin