SOLUTION: The two functions are f(x) = x^3 -x and g(x) = 3x I must find the area bounded by both of them.
First, I set them equal to each other. I get x = 0, 2, -2
Therefore, by the
Algebra.Com
Question 1006409: The two functions are f(x) = x^3 -x and g(x) = 3x I must find the area bounded by both of them.
First, I set them equal to each other. I get x = 0, 2, -2
Therefore, by the addition property of integrals I have [-2,0] and [0,2].
Now, I must test points in those intervals to see where the graph is bigger.
for [-2,0]
f(-1) = (-1)^3 - (-1) = 0
g(-1) = (-1)(3) = - 3
so, f is bigger.
for [0,2]
f(1) = (1)^3 - 1 = 0
g(1) = 3(1) = 3
so, g is bigger
Now, to set up the integrals
int[from -2 to 0] (f(x)-g(x))dx + int[from 0 to 2] (g(x)-f(x))dx
integrating the first I get:
(x^4)/4 -(4x^2)/2
integrating the second I get:
(3x^2)/2 - (x^4)/4 + (x^2)/2
evaluating the first I get the value -4
evaluating the second I get the value 0
Area = |-4| = 4?
Something seems off.
Please help
Thank you
Answer by KMST(5328) (Show Source): You can put this solution on YOUR website!
The integrals are
and
Both integrals are the same, but that should be no surprise,
because is an odd function,
meaning that ,
and that makes its graph symmetrical with respect to the origin,
meaning that its graph rotated falls on to of the original graph.
The same can be said of ,
and of course, the same can be said of .
RELATED QUESTIONS
Find the area of the region bounded by functions:
{{{ f(x)= -x^2 + 3x }}} and {{{ g(x) = (answered by Edwin McCravy)
Find the area of the region bounded by the functions f(x) = x4 and g of x equals the... (answered by robertb)
Functions f and g are defined by f : x tends to
x/(x-3) , x not equals 3, g : x tends... (answered by greenestamps)
f(x)=1/x^2+3
g(x)= sqrt x^2-2x
Find f(-x/2) and g(x+7)
Write without parenthesis , (answered by josgarithmetic)
let g and h be two functions defined by:
g(x)=(x-1)(x-6)
h(x)=-9x+1
for any... (answered by josgarithmetic)
Let g and f be two functions defined by
g(x)=(-5+x)(2+x)
f(x)=2-9x
for any real... (answered by ReadingBoosters)
My question is about inverse functions, didn't see an area to submit them. Anyway I was... (answered by rothauserc)
Two functions f and g are defined on the set R, of real numbers by x f x 2 3 and 23 : 1 x (answered by ikleyn)
Two functions f and g are defined by f : x maps to x-1/x+1 , x is not equal to -1 and g : (answered by Solver92311,MathTherapy)