SOLUTION: what is the sum of the first six terms in the geometric sequence 1,4,16?
Algebra.Com
Question 845783: what is the sum of the first six terms in the geometric sequence 1,4,16?
Answer by richwmiller(17219) (Show Source): You can put this solution on YOUR website!
S=t*(1 - r^n)/(1 - r)
S=1*(1 - 4^6)/(1 - 4)
S = 1365
1,4,16,64,256,1024
RELATED QUESTIONS
What is the sum of the geometric sequence 1, 4, 16, ... if there are 8... (answered by stanbon)
the sum of the first 6 terms of the geometric sequence 1, -2, 4, -8, ... is... (answered by htmentor)
In a geometric sequence of real numbers, the sum of the first
two terms is 7 and the... (answered by ikleyn)
what is the sum of the first 15 terms in the geometric sequence... (answered by Alan3354)
Find the sum of the first n terms of each geometric sequence.
S sub 6 ; 1 + 4 + 16 +... (answered by ikleyn)
A geometric sequence has a1 = 16 and r = \sqrt{2}2, what is the sum of the first 21... (answered by richwmiller)
Find the sum of the first 8 terms in the geometric series 1-4+16-64+...
(answered by richwmiller)
In a geometric sequence of real numbers, the sum of the first two terms is 11 and the sum (answered by ikleyn)
The sum of the first three terms of a geometric sequence is 8 and the sum of the first... (answered by mananth,ikleyn,Edwin McCravy,greenestamps)