If d is the common difference in the A.P., then q = p+d, r = p+2d, s = p+3d p²-3q²+3r²-s² = p² - 3(q²-r²) - s² = (p²-s²) - 3(q²-r²) = Factor both parentheses as the difference of squares: [p-s][p+s] - 3[q-r][q+r] = Substitute q = p+d, r = p+2d, s = p+3d [p-(p+3d)][p+(p+3d)] - 3[(p+d)-(p+2d)][(p+d)+(p+2d)] = [p-p-3d][p+p+3d] - 3[p+d-p-2d][p+d+p+2d] = [-3d][2p+3d] - 3[-d][2p+3d] = -3d[2p+3d] + 3d[2p+3d] = -6dp -9d² + 6dp + 9d² = 0 Edwin