SOLUTION: Try to solve this sequence 112 , 2112 , 2122 .... Calculate the further terms

Algebra.Com
Question 558951: Try to solve this sequence
112 , 2112 , 2122 ....
Calculate the further terms

Answer by Edwin McCravy(20056)   (Show Source): You can put this solution on YOUR website!
t1 = 112
t2 = 2112
t3 = 2122

Three terms always determine a quadratic sequence.

So let the nth term be 

tn = an² + bn + c

Then 

t1 = 112 = a(1)² + b(1) + c 

                          a + b + c =  112

t2 = 2112 = a(2)² + b(2) + c 

                         4a + 2b + c = 2112

t3 = 2122 = a(3)² + b(3) + c 

                         9a + 3b + c = 2122

 So we solve the system:

ì a +  b + c =   112
í4a + 2b + c =  2112
î9a + 3b + c =  2122

We get a=-995, b = 4985, and c = -3878

So the three terms given fit the sequence:

tn = -995n² + 4985t - 3878

So the first 50 terms are:

t1 = -995(1)² + 4985(1) - 3878 = 112
t2 = -995(2)² + 4985(2) - 3878 = 2112
t3 = -995(3)² + 4985(3) - 3878 = 2122
t4 = -995(4)² + 4985(4) - 3878 = 142
t5 = -995(5)² + 4985(5) - 3878 = -3828
t6 = -995(6)² + 4985(6) - 3878 = -9788
t7 = -995(7)² + 4985(7) - 3878 = -17738
t8 = -995(8)² + 4985(8) - 3878 = -27678
t9 = -995(9)² + 4985(9) - 3878 = -39608
t10 = -995(10)² + 4985(10) - 3878 = -53528
t11 = -995(11)² + 4985(11) - 3878 = -69438
t12 = -995(12)² + 4985(12) - 3878 = -87338
t13 = -995(13)² + 4985(13) - 3878 = -107228
t14 = -995(14)² + 4985(14) - 3878 = -129108
t15 = -995(15)² + 4985(15) - 3878 = -152978
t16 = -995(16)² + 4985(16) - 3878 = -178838
t17 = -995(17)² + 4985(17) - 3878 = -206688
t18 = -995(18)² + 4985(18) - 3878 = -236528
t19 = -995(19)² + 4985(19) - 3878 = -268358
t20 = -995(20)² + 4985(20) - 3878 = -302178
t21 = -995(21)² + 4985(21) - 3878 = -337988
t22 = -995(22)² + 4985(22) - 3878 = -375788
t23 = -995(23)² + 4985(23) - 3878 = -415578
t24 = -995(24)² + 4985(24) - 3878 = -457358
t25 = -995(25)² + 4985(25) - 3878 = -501128
t26 = -995(26)² + 4985(26) - 3878 = -546888
t27 = -995(27)² + 4985(27) - 3878 = -594638
t28 = -995(28)² + 4985(28) - 3878 = -644378
t29 = -995(29)² + 4985(29) - 3878 = -696108
t30 = -995(30)² + 4985(30) - 3878 = -749828
t31 = -995(31)² + 4985(31) - 3878 = -805538
t32 = -995(32)² + 4985(32) - 3878 = -863238
t33 = -995(33)² + 4985(33) - 3878 = -922928
t34 = -995(34)² + 4985(34) - 3878 = -984608
t35 = -995(35)² + 4985(35) - 3878 = -1048278
t36 = -995(36)² + 4985(36) - 3878 = -1113938
t37 = -995(37)² + 4985(37) - 3878 = -1181588
t38 = -995(38)² + 4985(38) - 3878 = -1251228
t39 = -995(39)² + 4985(39) - 3878 = -1322858
t40 = -995(40)² + 4985(40) - 3878 = -1396478
t41 = -995(41)² + 4985(41) - 3878 = -1472088
t42 = -995(42)² + 4985(42) - 3878 = -1549688
t43 = -995(43)² + 4985(43) - 3878 = -1629278
t44 = -995(44)² + 4985(44) - 3878 = -1710858
t45 = -995(45)² + 4985(45) - 3878 = -1794428
t46 = -995(46)² + 4985(46) - 3878 = -1879988
t47 = -995(47)² + 4985(47) - 3878 = -1967538
t48 = -995(48)² + 4985(48) - 3878 = -2057078
t49 = -995(49)² + 4985(49) - 3878 = -2148608
t50 = -995(50)² + 4985(50) - 3878 = -2242128

Edwin

RELATED QUESTIONS

how many terms are in the sequence -83, -66, -49, -32,...597 I think this is an... (answered by ikleyn)
1,2,0.5,5,0.25,8..... Calculate the sum of 100 terms of the... (answered by Edwin McCravy)
What are the next to terms in this sequence? 5,10,20,40... (answered by fcabanski)
Solve the following simultaneous equation 32x^2+15y^2=2112 7x^2-3y^2=60 (answered by ankor@dixie-net.com)
what the freak is the l.c.m AND the g.c.d. of 82, 96 and 112? i'm too tired to try this... (answered by AnlytcPhil,tanny)
the sum to n terms of a sequence of numbers is given as Sn=n/2(5n+9). 1.calculate the... (answered by richwmiller)
The sum to n terms of a sequence of numbers is given as : Sn = n/2(5n+9) 1. Calculate... (answered by ikleyn)
Express the following in terms of a + bi √5(2 + i) / 2 - i (3 - i)^2 / 2 + i... (answered by Alan3354)
Find the sum of the areas under the standard normal curve to the left of z = -1.25 and to (answered by stanbon)