1 + (1+2) + (1+2+3) + (1+2+3+4) + ··· + (1+2+···+100) I'll get one more term: 1 + (1+2) + (1+2+3) + (1+2+3+4) + (1+2+3+4+5) + ··· + (1+2+···+100) 1 + 3 + 6 + 10 + 15 + ··· + (1+2+···+100) n an Sn d1 d2 d3 1 1 1 1 2 1 2 3 4 3 3 3 6 10 6 4 10 20 5 15 It takes three differences to get a constant column, so we will assume a quadratic sum formula Sn Sn = An³ + Bn² + Cn + D S1 = A(1)³ + B(1)² + Cn + D 1 = A + B + C + D S2 = A(2)³ + B(2)² + C(2) + D 4 = A(8) + B(4) + 2C + D 4 = 8A + 4B + 2C + D S3 = A(3)³ + B(3)² + C(3) + D 10 = A(27) + 9B + 3C + D 10 = 27A + 9B + 3C + D S4 = A(4)³ + B(4)² + C(4) + D 20 = A(64) + 16B + 4C + D 20 = 64A + 16B + 4C + D So we have the system of equations: 1 = A + B + C + D 4 = 8A + 4B + 2C + D 10 = 27A + 9B + 3C + D 20 = 64A + 16B + 4C + D or in standard order: A + B + C + D = 1 8A + 4B + 2C + D = 4 27A + 9B + 3C + D = 10 64A + 16B + 4C + D = 20 Solve that system and get A =, B = , C = , D = 0 Then this Sn = An³ + Bn² + Cn + D becomes Sn = n³ + n² + n + D Sn = n³ + n² + n + D Sn = (n³+3n²+2n) Sn = n(n²+3n+2) Sn = (n+1)(n+2) That's the general formula, so the sum of the first 100 terms is found by substituting n = 100: S100 = (100+1)(100+2) S100 = (101)(102) S100 = 171700 Edwin