find the sum of the multiples of 3 from 3 to 99 inclusive
Two ways: with and without formulas:
1. With formulas:
an = a1 + (n - 1)d
Sn = (n/2)(a1 + an)
a1 = 3
d = 3
an = a1 + (n - 1)·d
99 = 3 + (n - 1)·3
99 = 3 + 3(n - 1)
96 = 3(n - 1)
32 = n - 1
33 = n
Sn = (n/2)(a1 + an)
S33 = (33/2)(3 + 99)
S33 = (33/2)(102)
S33 = 1683
2: Without formulas:
S = 3 + 6 + 9 + ... + 97 + 98 + 99
S = 3( 1 + 2 + 3 + ... + 31 + 32 + 33)
S = 3(33 + 32 + 31 + ... + 3 + 2 + 1)
2S = 3(34 + 34 + 34 + ... + 34 + 34 + 34)
2S = 3(34·33)
2S = 3366
S = 1683
Edwin