What are the first three terms if the 11th term of an
arithmetic sequence is 60 and the sum of the first 11
terms is 55?
a1,__,__,__,__,__,__,__,__,__,60,...
Sn = (n/2)(a1 + an)
S11 = (11/2)(a1 + a11)
55 = (11/2)(a1 + 60)
Multiply both sides by 2
110 = 11(a1 + 60)
110 = 11a1 + 660
-550 = 11a1
-550/11 = a1
-50 = a1
So
a1,__,__,__,__,__,__,__,__,__,60,
becomes
-50,__,__,__,__,__,__,__,__,__,60,
To fill in the blanks, we only need the common difference d:
an = a1 + (n - 1)d
60 = -50 + (11 - 1)d
60 = -50 + 10d
110 = 10d
11 = d
So the sequence
-50,__,__,__,__,__,__,__,__,__,60,...
becomes
-50,-39,-28,-17,-6,5,16,27,38,49,60,...
So the first three terms are -50,-39 and -28
Edwin