SOLUTION: 1) Evaluate the series
5
Σ (3)(1/2)^k
k=1
A. 93/32
B. 45/16
C. 23/8
D. 11/4
2) Evaluate the partial sum
20
Σ (26+4k)
k=5
A. 986
B. 1060
C. 1140
D. 1
Algebra.Com
Question 1085497: 1) Evaluate the series
5
Σ (3)(1/2)^k
k=1
A. 93/32
B. 45/16
C. 23/8
D. 11/4
2) Evaluate the partial sum
20
Σ (26+4k)
k=5
A. 986
B. 1060
C. 1140
D. 1216
3) Find the partial sum of the first 8 termsof the series
8+16+32+...
A. 1024
B. 2040
C. 2048
D. 2464
4) Evaluate the partial sum
9+12+15+...+51+54+57
A. 504
B. 561
C. 621
D. 698
Answer by Boreal(15235) (Show Source): You can put this solution on YOUR website!
k=1, product is 3/2
2--3/4
3--3/8
4--3/16
5--3/32
common denominator is 32, numerator is 93, 93/32,
A
--------------------
at 5, it is 46. At 20, it is 106
at 12, it is 74, at 13, it is 78. The average term is 76. There are 16 terms, average is 76, total 1216.
D
-------------------
a1=8; an=a1*2^(n-1)
for 8th term is is a1(1-2^8)/(1-2)=8*(-255/-1)=8*255=2040
8+16+32+64+128+256+512+1024=2040
C
-------------------
Partial sum between 9 and 57, with d=3
There are 17 terms, there is a middle term (the ninth, which is a1+(3*8)=33) so 17 times the average, which is 33=561.
B
RELATED QUESTIONS
1) Evaluate.
s21 for 23+20+17+14+...
enter only the sum.
2) Evaluate.
13
Σ... (answered by ikleyn)
1) Expand the series and evaluate.
7
Σ -3(2)^k-1
k=1
enter only the sum.
(answered by Alan3354)
1) Find the sum of the series.
9
Σ k^2
k=1
2) Find the sum of the series.
6... (answered by ikleyn)
) Find the sum of the series.
9
Σ k^2
k=1
2) Find the sum of the series.
6... (answered by ikleyn)
1) Evaluate the series
7
Σ K
k=1
A. 19
B. 23
C. 28
D. 49
2) Evaluate the (answered by Edwin McCravy)
Evaluate the following expressions for the given set of scores:
a. ΣX b.... (answered by stanbon)
Evaluate the following expressions for the given set of scores:
a. ΣX b.... (answered by stanbon)
Evaluate the function.
Find f(k - 1) when: f(x) = 4x^2 - 3x - 3
A) f(k - 1) = 4k^2 - (answered by Earlsdon)
Check the formula is correct for K=1,2 and 3
k
Σn^2=k (k+1)(2k+1)/6
n=0
Use... (answered by ikleyn)