# SOLUTION: Three people, each working at the same rate, finish a job in 20 hours. At this rate, how many hours will it take five people to finish three such jobs?

Algebra ->  Algebra  -> Rate-of-work-word-problems -> SOLUTION: Three people, each working at the same rate, finish a job in 20 hours. At this rate, how many hours will it take five people to finish three such jobs?      Log On

 Ad: Algebrator™ solves your algebra problems and provides step-by-step explanations! Ad: Algebra Solved!™: algebra software solves algebra homework problems with step-by-step help!

 Word Problems: Rate of work, PAINTING, Pool Filling Solvers Lessons Answers archive Quiz In Depth

 Click here to see ALL problems on Rate-of-work-word-problems Question 203045: Three people, each working at the same rate, finish a job in 20 hours. At this rate, how many hours will it take five people to finish three such jobs?Answer by ptaylor(2048)   (Show Source): You can put this solution on YOUR website! Let x=amount of time it takes five people to finish one job, then 3x=amount of time it takes five people to finish 3 such jobs ok. Three people work at the rate of 1/20 of the job per hour, so one person works at the rate of (1/20)/3 or 1/60 of the job per hour Five people work at the rate of 5*(1/60) or 5/60 of the job per hour So, our equation to solve is: (5/60)*x=1 (1 job, that is) 5x=60 x=12 hours--------------amount of time it takes five people to complete 1 job 3x=3*12=36 hours ------------amount of time it takes five people to complete three such jobs Another way to look at this problem: If three persons can complete the job in 20 hours, then the job requires 3*20 or 60 person-hours to complete. Three such jobs would require 3*60 or 180 person-hours to complete So, five persons could complete three such jobs in 180/5=36 hours Hope this helps----ptaylor