for each indicated sum and/or difference,simplify the radicals and combine when possible. That's too many to post. Here are three of them. You do the rest. They're similar: __ ___ 5xÖ72 + Ö8x² Break 72 into prime factors 72 = 8·9 = 2·4·3·3 = 2·2·2·3·3 Break 8x² into prime factors 8x² = 2·4·x·x = 2·2·2·x·x Substitute under radicals: _________ _________ 5xÖ2·2·2·3·3 + Ö2·2·2·x·x Group like factors into pairs: _____________ _____________ 5xÖ(2·2)·2·(3·3) + Ö(2·2)·2·(x·x) Write each pair as a square: _______ _______ 5xÖ2²·2·3² + Ö2²·2·x² Take the squares out in front of the radicals as non-square factors: _ _ 5x·2·3Ö2 + 2·xÖ2 _ _ 30xÖ2 + 2xÖ2 _ Factor out xÖ2 _ xÖ2(30 + 2) _ xÖ2(32) _ 32xÖ2 =========================================== __ __ __ __ (1/3)Ö45 - (1/2)Ö12 + Ö20 + (2/3)Ö27 Break 45 into prime factors 45 = 9·5 = 3·3·5 Break 12 into prime factors 12 = 4·3 = 2·2·3 Break 20 into prime factors 20 = 4·5 = 2·2·5 Break 27 into prime factors 27 = 9·3 = 3·3·3 Substitute under radicals _____ _____ _____ _____ (1/3)Ö3·3·5 - (1/2)Ö2·2·3 + Ö2·2·5 + (2/3)Ö3·3·3 Group like factors into pairs: _______ _______ _______ _______ (1/3)Ö(3·3)·5 - (1/2)Ö(2·2)·3 + Ö(2·2)·5 + (2/3)Ö(3·3)·3 Write each pair as a square: ____ ____ ____ ____ (1/3)Ö3²·5 - (1/2)Ö2²·3 + Ö2²·5 + (2/3)Ö3²·3 Take the squares out in front of the radicals as non-square factors: _ _ _ _ (1/3)·3Ö5 - (1/2)·2Ö3 + 2Ö5 + (2/3)·3Ö3 _ _ _ _ Ö5 - Ö3 + 2Ö5 + 2Ö3 Group like radical terms together _ _ _ _ Ö5 + 2Ö5 - Ö3 + 2Ö3 _ _ Factor Ö5 out of first two terms and Ö3 out of last two terms: _ _ Ö5(1 + 2) + Ö3(-1 + 2) _ _ Ö5(3) + Ö3(1) _ _ 3Ö5 + Ö3 ============================================== ______ _______ aÖ5000b³ + 2Ö125a³b² Break 5000b³ into prime factors: 5000b³ = 2·2500·b·b·b = 2·2·1250·b·b·b = 2·2·2·625·b·b·b = = 2·2·2·5·125·b·b = 2·2·2·5·5·25·b·b·b = = 2·2·2·5·5·5·5·b·b·b Break 125a³b² into prime factors 125a³b² = 5·25·a·a·a·b·b = 5·5·5·a·a·a·b·b Substitute under radicals: ___________________ _______________ aÖ2·2·2·5·5·5·5·b·b·b + 2Ö5·5·5·a·a·a·b·b Group like factor into pairs: ___________________________ _____________________ aÖ(2·2)·2·(5·5)·(5·5)·(b·b)·b + 2Ö(5·5)·5·(a·a)·a·(b·b) Write each pair as a square: _______________ ____________ aÖ2²·2·5²·5²·b²·b + 2Ö5²·5·a²·a·b² Take the squares out in front of the radicals as non-square factors: ___ ___ a·2·5·5·bÖ2·b + 2·5·a·bÖ5·a __ __ 50abÖ2b + 10abÖ5a Factor out 10ab __ __ 10ab(5Ö2b + Ö5a) Edwin