SOLUTION: Evaluate each limit. Rationalize the numerator by multiplying both numerator and denominator √x+1. lim x→1 x-1/√x-1

Algebra.Com
Question 273224: Evaluate each limit. Rationalize the numerator by multiplying both numerator and denominator √x+1.
lim
x→1
x-1/√x-1

Answer by jsmallt9(3758)   (Show Source): You can put this solution on YOUR website!

The "trick" you will see here is used a lot to find limits where the denominator appears to approach zero. What we will do is multiply by its conjugate, . From the pattern we know that when you multiply conjugates you get the difference of the squares of the two terms. Let's see how this helps:

which simplifies to:

A fine but important point is that in this limit x approaches 1 but is never actually equal to 1! This is important because if x is 1, x-1 is zero and we cannot cancel 0/0. But since x is never 1, x-1 is never 0 and we can cancel the (x-1)'s:

This limit is simple to find. I'll leave it up to you to finish.

Responding to your message: This is all correct as long as the problem you posted is correct. Of course if the problem is actually:

then your answer will be "upside down", too (which matches the answer key's answer of 1/2).


RELATED QUESTIONS

Evaluate limit lim x->1... (answered by Edwin McCravy)
simplify by multiplying both the numerator and the denominator by the LCD of all terms.... (answered by swincher4391)
For what value of the constants a and b such that the following limit exists: lim... (answered by robertb)
numerator of a fraction is 1 less than the denominator. If the numerator and the... (answered by stanbon)
For each of the limits determine whether the limit exists as a number, as an infinite... (answered by Boreal)
Evaluate the following limit: lim x^2 x→1 |x-1| (answered by Fombitz)
This is actually a Calculus 1 problem, but I am having problems with the algebra portion. (answered by solver91311)
Evaluate the following limit. lim x→∞ (1+... (answered by MathLover1)