SOLUTION: Good Morning, Can anyone show me the steps for this, please? Consider the following equation and determine if it is a parabola, an ellipse, or a hyperbola and sketch it's graph:

Algebra.Com
Question 968175: Good Morning, Can anyone show me the steps for this, please?
Consider the following equation and determine if it is a parabola, an ellipse, or a hyperbola and sketch it's graph:
4y^2+6x-2y+3x^2-15=2y^2+4x^2
Thank you in advance for your help.

Answer by Edwin McCravy(20060)   (Show Source): You can put this solution on YOUR website!
Consider the following equation and determine if it is a parabola, an ellipse, or a hyperbola and sketch it's graph:
4y^2+6x-2y+3x^2-15=2y^2+4x^2



Subtract the right side from both sides to get 0 on the right:



We can tell this is the graph of a hyperbola because the x² and 
y² terms have opposite signs when all non-zero terms are one 
side and all like terms combined. 

Get the y terms together and the x terms together, and add 15
to both sides to get the contant term off the left side:



Factor the coefficient of the y² term, which is 2, out of the 
first two terms on the left, skipping a space at the end of the
parentheses.

Factor the coefficient of the x² term, which is -1, out of the 
last two terms on the left, skipping a space at the end of the
parentheses.


  

Complete the square inside each parentheses:

In your head or on scratch paper,
1. Multiply the coefficient of y, which is -1, by 1/2, getting -1/2.
2. Square -1/2, getting (-1/2)² = +1/4
3. Add +1/4 in the space in the first parentheses, which amounts to
   adding 2 times +1/4 or +1/2 to the left side. So add +1/2 to the right 
   side.

1. Multiply the coefficient of x, which is -6, by 1/2, getting -3.
2. Square -3, getting (-3)² = +9
3. Add +9 in the space in the first parentheses, which amounts to
   adding -1 times +9 or -9 to the left side. So add -9 to the 
   right side.



Factor each trinomial: 
                       
Combine the terms on the right 



Clear the fraction on the right by multiplying 
through by 2:



Get 1 on the right by dividing through by 13:



Divide numerator and denominator by the coefficients of
the squares of the binomials:





This is in standard form:

 which is the equation of a hyperbola which
opens like this:                                  
  
So , , , , , 

The center is (h,k) = , the big green dot below.

We draw the defining rectangle with (h,k) as its center, its vertical
dimension is 2a = , and its horizontal dimension is 2b = .

We extend the diagonals of the defining rectangle, since they are the
asymptotes of the hyperbola. Then we sketch in the hyperbola:



Edwin

RELATED QUESTIONS

Good Morning, Can anyone show me the steps for this, please? Consider the following... (answered by josgarithmetic,MathTherapy)
Good afternoon gang. Can anyone show me the steps and answer for this problem? Find... (answered by jake_6233)
Good evening! Can someone walk me through this, please? For the following equation of a... (answered by lwsshak3)
This one is stumping me. Can anyone show me the steps and solution? Factor each... (answered by Nate)
I was wondering if someone who is an expert in this area could help me? I don't... (answered by jim_thompson5910)
(x-y^1/2)/(1/x+y^1/2) Good Morning...can you please show me how to perform the... (answered by CubeyThePenguin)
Good morning, can some one please tell me what the difference is between factoring an... (answered by rothauserc,Alan3354,addingup,Theo)
Good Morning can I please get some help to solve a for this equation? -2a > -8 (the... (answered by josmiceli)
Can anyone help me? I swear it's the last one:-)My problem is: Use the... (answered by Alan3354)