SOLUTION: The graph of the equation given below is a circle. What is the length of the radius of the circle? (x - 6)^2 + (y + 5)^2 = 21^2

Algebra.Com
Question 658794: The graph of the equation given below is a circle. What is the length of the radius of the circle?
(x - 6)^2 + (y + 5)^2 = 21^2

Answer by Alan3354(69443)   (Show Source): You can put this solution on YOUR website!
The graph of the equation given below is a circle. What is the length of the radius of the circle?
(x - 6)^2 + (y + 5)^2 = 21^2
===================
21

RELATED QUESTIONS

The graph of the equation below is a circle. What is the length of the radius of the... (answered by MathLover1)
The graph of the equation below is a circle. What is the length of the radius of the... (answered by solver91311,josgarithmetic)
The graph of the equation below is a circle. What is the length of the radius of the... (answered by stanbon)
The graph of the equation below is a circle. What is the length of the radius of the... (answered by richard1234)
the equation for the circle below ia x^2+y^2=64. what is the length of the circle... (answered by lynnlo)
What is the length of the radius of the circle with the equation... (answered by lwsshak3)
What is the radius of the circle given by the equation below? x^2 + 8x = -y^2 - 16y -... (answered by lwsshak3)
(x+5)*2+(y+7)*2=21*2 what is the length of the... (answered by Fombitz)
The equation below is a circle. What is the x-coordinate of the center of the circle?... (answered by ewatrrr)