SOLUTION: Graph the parabola by finding the vertex, directrix, and opening. Equation given 4x-3=-ysq.+4y+1

Algebra.Com
Question 614352: Graph the parabola by finding the vertex, directrix, and opening. Equation given 4x-3=-ysq.+4y+1
Answer by lwsshak3(11628)   (Show Source): You can put this solution on YOUR website!
Graph the parabola by finding the vertex, directrix, and opening. Equation given
4x-3=-ysq.+4y+1
4x-3=-y^2+4y+1
complete the square
4x-3=-(y^2-4y+4)+1+4
4x-3=-(y-2)^2+5
4x-8=-(y-2)^2
-(y-2)^2=4x-8
(y-2)^2=-4(x-2)
This is an equation of a parabola that opens leftwards.
Its standard form: (y-k)^2=-4p(x-h), (h,k)=(x,y) coordinates of the vertex
For given equation: (y-2)^2=-4(x-2)
Vertex: (2,2)
axis of symmetry: y=2
4p=4
p=1
directrix: x=3 (one unit to the right of the vertex on the axis of symmetry)

RELATED QUESTIONS

Find the vertex, focus, and directrix of the parabola given by the equation x^2 + 4x + 4y (answered by KMST)
find the vertex, focus, and directrix of the parabola given by each equation. Sketch the... (answered by josgarithmetic)
What is the equation for the following graph? parabola opening to the right, with vertex (answered by lwsshak3)
find the vertex, focus, and directrix of the parabola given by each equation. Sketch the... (answered by josgarithmetic)
find the vertex, focus, and directrix of the parabola given by each equation. Sketch the... (answered by josgarithmetic)
name the vertex, axis of symmetry, focus, directrix, and direction of opening of the... (answered by lwsshak3)
find the vertex, focus, and directrix of the parabola and sketch its graph. the equation (answered by richwmiller)
Find the vertex, focus, and directrix of the parabola X^2-4X- 4Y +16=0. Solve and graph (answered by josgarithmetic)
Find the vertex, focus, and directrix of the parabola given by the equation (x-1)^2 =... (answered by lwsshak3)