a² + b² = c² So substitute (x + 3) for a, (x + 10) for b, and (x + 11) for c (x + 3)² + (x + 10)² = (x + 11)² (x + 3)² = (x + 3)(x + 3) = x² + 3x + 3x + 9 = (x² + 6x + 9) So substitute (x² + 6x + 9) for (x + 3)² (x² + 6x + 9) + (x + 10)² = (x + 11)² (x + 10)² = (x + 10)(x + 10) = x² + 10x + 10x + 100 = (x² + 20x + 100) So substitute (x² + 20x + 100) for (x + 10)² (x² + 6x + 9) + (x² + 20x + 100)² = (x + 11)² (x + 11)² = (x + 11)(x + 11) = x² + 11x + 11x + 121 = (x² + 22x + 121) So substitute (x² + 22x + 121) for (x + 11)² (x² + 6x + 9) + (x² + 20x + 100) = (x² + 22x + 121) x² + 6x + 9 + x² + 20x + 100 = x² + 22x + 121 2x² + 26x + 109 = x² + 22x + 121 x² + 4x - 12 = 0 (x + 6)(x - 2) = 0 x + 6 = 0 ; x - 2 = 0 x = -6; x = 2 Using x = -6, a = x + 3 = -6 + 3 = -3 That's no good because we can't have a negative number for the measure of a side of a triangle. So we discard -6, [not because x is negative but because it produces a negative side of a triangle. In other problems like this a negative value for x would result in only positive sides] Using x = 2, a = x + 3 = 2 + 3 = 2 + 3 = 5 b = x + 10 = 2 + 10 = 12 c = x + 11 = 2 + 11 = 13 All 3 sides are positive, so x = 2 is the answer. Edwin