We will be using the law of cosines. Since the adjacent interior angles of a parallogram are supplementary, cos(∠ABC) = -cos(∠DAB), so Using the law of cosines on ΔABD BD² = AD² + AB² - 2∙ AD∙ AB∙cos(∠DAB) (1) 602² = 418² + 694² - 2∙418∙694∙cos(∠DAB) Using the law of cosines on ΔABC AC² = BC² + AB² - 2∙ BC ∙AB∙cos(∠ABC) AC² = 418² + 694² - 2∙418∙694∙[-cos(∠DAB)] (2) AC² = 418² + 694² + 2∙418∙694∙cos(∠DAB) Adding equations (1) and (2) (1) 602² = 418² + 694² - 2∙418∙694∙cos(∠DAB) (2) AC² = 418² + 694² + 2∙418∙694∙cos(∠DAB) 602² + AC² = 2∙418² + 2∙694² AC² = 2∙418² + 2∙694² - 602² AC² = 2∙418² + 2∙694² - 602² AC² = 349448 + 963272 - 362484 AC² = 950316 AC = √950316 AC = 974.8415256 ft. Edwin