1. P -> R 2. (Q & P) v P Conclusion R (Q & P) v P given premise (QvP)&(PvP) distributive law of v over & (QvP)&P idempotent law, PvP is equivalent to P P simplification P -> R given premise P&(P -> R) From two preceding statements P&(~PvR) Implication (P&~P)v(P&R) Distributive law of & over v Fv(P&R) Contradiction P&~P is equivalent to F P&R F is the identity for v R Simplification Edwin