1. C <-> T 2. ~C -> (~S v ~R) 3. ~C -> D 4. (~D v S) & (~D v R) We have to show T 5. ~D v (S&R) Distributive law on 4 6. ~C -> ~(S&R) DeMorgan's law on the right side of 2 7. (S & R) -> C Contrapositive of 6 8. ~D -> C Contrapositive of 3 9. [(S&R) -> C} & (~D -> C) Conjunction of 7 and 8 10. [~(S&R) v C] & (~~D v C) Writing conditionals as disjunctions in 9 11. [~(S&R) v C] & (D v C) Double negation on D in 10 12. [~(S&R) & D] v C Distributive law on 11 13 ~[(S&R v ~D] v C DeMorgan's law on the left part of 12 14. (S&R) v ~D Commutative law on 5 15. [(S&R) v ~D] & { ~[(S&R) v ~D] v C } Conjunction of 14 and 13 16.{[(S&R) v ~D] & ~[(S&R) v ~D]} v C Associative law on 15 17. 0 v C The expression in braces in 16 is a contradiction 18. C The identity law for disjunction in 17 19. T By biconditional 1 Edwin