SOLUTION: Premise: 1.(∃x) (Ax • Bx) ∨ (∃x) (Cx ∨ Dx) 2.(∃x) (Ax ∨ Cx) ⊃ (x) Ex 3.~Em Conclusion: (∃x) Dx

Algebra.Com
Question 1208962: Premise:
1.(∃x) (Ax • Bx) ∨ (∃x) (Cx ∨ Dx)
2.(∃x) (Ax ∨ Cx) ⊃ (x) Ex
3.~Em
Conclusion:
(∃x) Dx

Answer by textot(100)   (Show Source): You can put this solution on YOUR website!
**1. (∃x) (Ax • Bx) ∨ (∃x) (Cx ∨ Dx)**
Given
**2. (∃x) (Ax ∨ Cx) ⊃ (x) Ex**
Given
**3. ~Em**
Given
**4. ~(x) Ex**
Universal Instantiation (3)
**5. ~[(∃x) (Ax ∨ Cx)]**
Modus Tollens (2, 4)
**6. ~[(∃x) (Ax ∨ Cx)] ≡ [~(∃x) Ax ∧ ~(∃x) Cx]**
De Morgan's Law (Quantifier Form)
**7. ~(∃x) Ax ∧ ~(∃x) Cx**
Equivalence (5, 6)
**8. ~(∃x) Ax**
Simplification (7)
**9. ~[(∃x) (Ax • Bx)]**
Simplification (7)
**10. ~(∃x) Ax ∨ ~[(∃x) Bx]**
De Morgan's Law (Quantifier Form) (9)
**11. ~(∃x) Ax**
Simplification (10)
**12. (∃x) (Cx ∨ Dx)**
Disjunctive Syllogism (1, 11)
**13. (∃x) Cx ∨ (∃x) Dx**
Distributive Law (Quantifier Form) (12)
**14. ~(∃x) Cx**
Simplification (7)
**15. (∃x) Dx**
Disjunctive Syllogism (13, 14)
**Therefore, (∃x) Dx**
This derivation demonstrates that the conclusion (∃x) Dx can be derived from the given premises using the specified rules of inference and quantifier negation.

RELATED QUESTIONS

Premise: 1.(∃x) (Ax • Bx) ⊃ (x) (Cx • Dx) 2.(∃x) Ax ⊃ (x) (Bx • Cx) 3.Ae (answered by textot)
1.x+a/b + b=A 2.bx+a=dx+c... (answered by stanbon)
cx-b=ax+dx solve for x (answered by MathLover1,stanbon)
solve for x: 1) bx-cx=-c 2) bx+a=dx+c (answered by stanbon)
Use the quantifier negation rule together with the eighteen rules of inference to derive... (answered by textot)
Use the eighteen rules of inference to derive the conclusion of the following symbolized... (answered by textot)
how does one simplify an expression like {{{1/(x-1)+1/(2-3x)}}} to something like... (answered by addingup)
ax+b=cx+d Solve for... (answered by Mathtut)