SOLUTION: 1. G⊃(H⊃K) 2. (H∨∼M)⊃∼K 3. H / ∼G

Algebra.Com
Question 1199146: 1. G⊃(H⊃K)
2. (H∨∼M)⊃∼K
3. H / ∼G

Found 2 solutions by math_helper, RBryant:
Answer by math_helper(2461)   (Show Source): You can put this solution on YOUR website!

Using -> instead of ⊃
1. G->(H->K) Premise
2. (Hv~M)-> ~K Premise
3. H Premise
// show ~G
4. Hv~M 3, Addition (ADD)
5. ~K 4,2 Modus Ponens (MP)
6. H & ~K 3,5 Conjunction (CONJ)
7. ~(~H v K) 6 DeMorgan's (DeM)
8. ~(H->K) 7 Material Implication (MI)
9. ~G 8,1 Modus Tollens (MT)
** done **
Answer by RBryant(14)   (Show Source): You can put this solution on YOUR website!


1. G⊃(H⊃K)
2. (H∨∼M)⊃∼K
3. H                / ∴ ∼G
------------------------------------------------------
4. H v ~M           3,  Add
5. ~K              2,4  M.P.
6. H • ~K          3,5  Conj
7. ~ ~H • ~K        6   D.N. 
8. ~ (~H v K)       7   DeM
9. ~ (H ⊃ K)        8   Impl
10. ~G             1,9   M.T.
                               QED


RELATED QUESTIONS

1. G ⊃ (H ⊃ K) 2. (H ∨ ∼M) ⊃ ∼K 3. H /... (answered by Edwin McCravy)
1. G⊃(H⊃K) 2. (H∨∼M)⊃∼K 3. H / ∼G ∨... (answered by Edwin McCravy)
Use an ordinary proof (not conditional or indirect proof): 1. G ⊃ (H ⊃ K) 2.... (answered by Edwin McCravy)
Logical Proofs (Solve and Show Work) 1. G ⊃ (H ⊃ K) 2. (H v ~M) ⊃ ~K 3. H /... (answered by Edwin McCravy)
1. (E∨F)→~G 2. ~H 3. H∨K 4. (K∨L)→E ∴... (answered by jim_thompson5910)
1. ~(K v F) 2. ~F ⊃ (K v C) 3. (G v C) ⊃ ~H / ~(K v... (answered by Edwin McCravy)
1. ~(K v F) 2. ~F ⊃ (K v C) 3. (G v C) ⊃ ~H /~(K v H) (answered by CPhill)
I have started the following proof but am not sure how to finish. thanks! 1. G>(H>K) 2. (answered by jim_thompson5910)
Given the functions: f(x)= {(3,5), (2,4), (1,7)} h(x)= {(3,2), (4,3), (1,6)} g(x)=... (answered by Fombitz)