SOLUTION: I. Evaluate the following arguments: 1. 1. ∼B ⊃ [(A ⊃ K ) ⊃ (B v ∼K )] 2. ∼J ⊃ K 3. A ⊃ ∼J 4. ∼B           /~A 2. 1. (R ⊃ F) ⊃ [(R ⊃ ∼G)

Algebra.Com
Question 1187551: I. Evaluate the following arguments:
1.
1. ∼B ⊃ [(A ⊃ K ) ⊃ (B v ∼K )] 2. ∼J ⊃ K 3. A ⊃ ∼J 4. ∼B           /~A
2.
1. (R ⊃ F) ⊃ [(R ⊃ ∼G) ⊃ (S ⊃ Q)]
2. (Q ⊃ F ) ⊃ (R ⊃ Q)
3. ∼G ⊃ F
4. Q ⊃ ∼G       / S ⊃ F
II. The following symbolized arguments are missing a premise. Write the premise
needed to derive the conclusion (last line ), and supply the justification for
the conclusion. Try to construct the simplest premise needed to derive the
conclusion.
1.
1. C v L
2. L ⊃ T
3. ______
4. L ____
2.
1. E ⊃ N
2. T v ∼E
3. S ⊃ E
4. ______
5. E ____
3.
1. ∼R ⊃ D 2. ∼J ⊃ ∼R 3. N v ∼R 4. ______
5. ∼F ⊃ ∼R

Answer by Edwin McCravy(20055)   (Show Source): You can put this solution on YOUR website!
I. Evaluate the following arguments:
1.
1. ∼B ⊃ [(A ⊃ K) ⊃ (B v ∼K)]
2. ∼J ⊃ K
3. A ⊃ ∼J
4. ∼B           /~A

5. (A ⊃ K) ⊃ (B v ∼K)        1,4 Modus Ponens
6. A ⊃ K                     3,2 Hypothetical Syllogism
7. B v ~K                     5,6 Modus Ponens
8. ~K                         7,4 Disjunctive Syllogism
9. ~K ⊃ ~~J                    2, Transposition
10. ~K ⊃ J                     9, Double negation
11.  J                      10,8, Modus ponens
12. ~~J ⊃ ~A                   3, Transposition
13. J ⊃ ~A                    12, Double negation
14. ~A                       13,11, Modus Ponens




II.
1. (R ⊃ F) ⊃ [(R ⊃ ∼G) ⊃ (S ⊃ Q)]
2. (Q ⊃ F ) ⊃ (R ⊃ Q)
3. ∼G ⊃ F
4. Q ⊃ ∼G                        / S ⊃ F

5. Q ⊃ F                     4,3, Hypothetical syllogism
6. R ⊃ Q                     2,5, Modus ponens
7. R ⊃ F                     5,6, Hypothetical syllogism
8. (R ⊃ ∼G) ⊃ (S ⊃ Q)       1,7, Modus ponens
9. R ⊃ ∼G                    6,4, Hypothetyical syllogism
10. S ⊃ Q                    8,9, Modus ponens
11. S ⊃ F                    10,5, Hypothetical syllogism

II. The following symbolized arguments are missing a premise. Write the premise
needed to derive the conclusion (last line ), and supply the justification for
the conclusion. Try to construct the simplest premise needed to derive the
conclusion.
This is crazy because the simplest premise is just to copy the
conclusion itself as the simplest premise.

Edwin

RELATED QUESTIONS

1. A > B 2. C > D 3. K > (A v C) 4. J v K 5. J > Z 6. W & ~Z / B v... (answered by jim_thompson5910)
Solve the two step proofs below: 1. ~C 2. A > B 3. B > C / ~A 1. D > E 2. F > G (answered by Edwin McCravy)
Evaluate the following derivative. d/dt (pt^2 + jt + k) A. pt+j B. 2pt+j C. 2pt (answered by josgarithmetic,ikleyn)
write each of the following using exponential notation. 1.a x a x b x b x c x c x c x c (answered by jim_thompson5910)
1. (I v K)>~L 2. (H v J) >I 3. ~K 4. H v K... (answered by jim_thompson5910)
1. (I v K) > ~L 2. (H v J) > I 3. ~K 4. H v K... (answered by jim_thompson5910)
Find a unit vector normal to the plane containing w = i and v = j . a. u= (sqrt2/2)k... (answered by ikleyn)
Solve: 2a-3b+4x-a a=4 b=2 c=3 2.n(j+i)-k^5+n n=3 i=4 j=2 k=1 3.eg+2(f+e) (answered by greenestamps)
1. J v (K · L) 2. ~ K //  J (answered by Edwin McCravy,math_tutor2020)