SOLUTION: (H ∨ M) ∨ L L ⊃ H H ⊃ (M ⊃ H) ∼(M ⊃ H) /M

Algebra.Com
Question 1130715: (H ∨ M) ∨ L
L ⊃ H
H ⊃ (M ⊃ H)
∼(M ⊃ H) /M

Answer by solver91311(24713)   (Show Source): You can put this solution on YOUR website!

1.   (H or M) or L
2.   L -> H
3.   H -> (M -> H)
4.   ~(M -> H)          |  M

5.   ~H                 3,4 Modus Tollens
6.   ~L                 5,2 Modus Tollens
7.   (H or M)           6,1 Disjunctive Syllogism
8.   Therefore M        7,5 Disjunctive Syllogism		


John

My calculator said it, I believe it, that settles it


RELATED QUESTIONS

Create a proof for the following argument 1. M ⊃ H 2.(K ∨ F) ⊃ M... (answered by Edwin McCravy)
(M ∨ R) ⊃ ∼K (G ⊃ ∼K) ⊃ C G ⊃ (M ∨ R) (answered by solver91311)
1. Q ⊃ (H • ∼F) 2. ∼(Q • ∼M) 3. ∼G ⊃ (Q •... (answered by Edwin McCravy)
1. ~(H ⊃ ~E) ⊃ K 2. M v (O ⊃ H) 3. A ⊃ [~A v (~M ⊃ ~K)]... (answered by Apples_21)
INSTRUCTIONS: Use natural deduction to derive the conclusion in the following problems. (answered by jim_thompson5910)
1. (I&E) ⊃ ~F 2. F∨(G & H) 3. I≡E/ I⊃G (answered by Edwin McCravy)
Use an ordinary proof to show the conclusion can be derived from the premises. 1. G... (answered by Edwin McCravy)
COMPLETE THE FOLLOWING PROOFS USING CONDITIONAL PROOF Premises: 1. G ⊃ (E... (answered by robertb)
∼A∙~B ~D⊃A M⊃[(NvO)⊃P] Q⊃(SvT)... (answered by jim_thompson5910)