1. (P v Q) & R
2. R & P -> S
3. Q & R -> S | S
4. P v Q 1 Conjunction Elimination
5. R 1 Conjunction Elimination
| 6. P ACP, Case 1
| 7. R & P 5, 6 Conjunction Addition
| 8. S 7, 2 Modus Ponens
| 9. Q ACP, Case 2
| 10. Q & R 9, 6 Conjunction Addition
| 11. S 10, 3 Modus Ponens
12. S 8, 11 Exhaustive cases
John

My calculator said it, I believe it, that settles it

1. (PvQ)&R
2. (R&P)>S
3. (Q&R)>S
Therefore, S
| 4. ~S Assumption for Indirect Proof
| 5. R&(PvQ) 1, Commutation
| 6. R 5, Simplification
| 7. ~(Q&R) 3,4 Modus Tollens
| 8. ~Qv~R 7, DeMorgan's law
| 9. ~Rv~Q 8, Commutation
|10. ~~R 6, Double negation
|11. ~Q 9,10 Disjunctive syllogism
|12. PvQ 1, Simplification
|13. QvP 12, Commutation
|14. P 13,11 Disjunctive syllogism
|15. R&P 6,14 Conjunction
|16. S 2,15 Modus ponens
|17. S&~S 16,4 Conjunction <--(contradiction)
18. ~~S 4-17 Indirect Proof
19. S 18, Double negation
Edwin