SOLUTION: Any help would be appreciated...
Three consecutive even integers are such that the square of the third is 76 more than the square of the second. Find the three integers.
Algebra.Com
Question 64770: Any help would be appreciated...
Three consecutive even integers are such that the square of the third is 76 more than the square of the second. Find the three integers.
Answer by stanbon(75887) (Show Source): You can put this solution on YOUR website!
Three consecutive even integers are such that the square of the third is 76 more than the square of the second. Find the three integers.
-------------
Consecutive even integers: 2x, 2x+2,2x+4
EQUATION:
(2x+4)^2=(2x+2)^2+76
4x^2+16x+16 = 4x^2+8x+4+76
8x=64
x=8
1st number: 2x=16
2nd: 18
3rd: 20
---------------------
Cheers,
Stan H.
RELATED QUESTIONS
Three consecutive even integers are such that the square of the third is 76 more than the (answered by jim_thompson5910)
Three consecutive even integers are such that the square of the third is 76 more than the (answered by venugopalramana)
Three consecutive even integers are such that the square of the third is 76 more than the (answered by Nate)
Three consecutive even integers are such that the square of the third is 76 more than the (answered by ankor@dixie-net.com)
Three consecutive even integers are such that the square of the third is 76 more than the (answered by jmichau3)
Three consecutive even integers are such that the square of the third is 76 more than the (answered by checkley75)
Three consecutive even integers are such that the square of the third is 76 more than the (answered by solver91311)
Three consecutive even integers are such that the square of the third is 76 more than the (answered by nerdybill)
Three consecutive even integers are such that the square of the third is 76 more than the (answered by checkley77)