____________________ -x² – x – 5)4x³ + x² + 17x – 15 We divide the 4x³ by -x²:= -4x, so we put that above the 17x like this: -4x -x² – x – 5)4x³ + x² + 17x – 15 Then we multiply -4x by -x² - x - 5: -4x(-x² - x - 5) = 4x³ + 4x² + 20x and write that down below -4x -x² – x – 5)4x³ + x² + 17x – 15 4x³ + 4x² + 20x Next we draw a line under that -4x -x² – x – 5)4x³ + x² + 17x – 15 4x³ + 4x² + 20x Now we subtract, imagining all the signs changed like this and adding: 4x³ + x² + 17x -4x³ - 4x² - 20x -3x² - 3x We write that down under the line: -4x -x² – x – 5)4x³ + x² + 17x – 15 4x³ + 4x² + 20x -3x² - 3x We bring down the -15 -4x -x² – x – 5)4x³ + x² + 17x – 15 4x³ + 4x² + 20x -3x² - 3x - 15 We divide the -3x² by -x²: = +3, so we put that above the -15 like this (don't forget the + sign: -4x + 3 -x² – x – 5)4x³ + x² + 17x – 15 4x³ + 4x² + 20x -3x² - 3x - 15 Then we multiply +3 by -x² - x - 5: +3(-x²-x-5) = -3x² - 3x - 15 and write that down below -4x + 3 -x² – x – 5)4x³ + x² + 17x – 15 4x³ + 4x² + 20x -3x² - 3x - 15 -3x² - 3x - 15 Next we draw a line under that -4x + 3 -x² – x – 5)4x³ + x² + 17x – 15 4x³ + 4x² + 20x -3x² - 3x - 15 -3x² - 3x - 15 Now we subtract, imagining all the signs changed like this and adding: -3x² - 3x - 15 3x² + 3x + 15 0 And we get a 0 remainder, so the answer is the quotient -4x + 3 Edwin