Given: P(A∩B) = P(A)P(B) Prove: P(A∩B') = P(A)P(B') P(A∩B) = P(A)P(B) given We will use the fact that P(X) = P(X∩Y)+P(X∩Y') P(A∩B) = [P(A∩B')+P(A∩B)][P(A∩B)+P(A'∩B)] and that P(A∩B)+P(A'∩B)+P(A∩B')+P(A'∩B') = 1, since one of those must occur, we can multiply it on the left side without changing the value: P(A∩B)[P(A∩B')+P(A∩B)+P(A'∩B)+P(A'∩B')] = [P(A∩B')+P(A∩B)][P(A∩B)+P(A'∩B)] Multiplying all that out: P(A∩B')P(A∩B)+P(A∩B)²+P(A∩B)P(A'∩B)+P(A∩B)P(A'∩B') = P(A∩B')P(A∩B)+P(A∩B')P(A'∩B)+P(A∩B)²+P(A∩B)P(A'∩B) Simplifying: P(A∩B)P(A'∩B') = P(A∩B')P(A'∩B) We want to prove: P(A∩B') ≟ P(A)P(B') P(A∩B') ≟ [P(A∩B')+P(A∩B)][P(A∩B')+P(A'∩B')] and since P(A∩B)+P(A'∩B)+P(A∩B')+P(A'∩B') = 1, since one of those must occur, we can multiply it on the left side: P(A∩B')[P(A∩B')+P(A∩B)+P(A'∩B)+P(A'∩B')] ≟ [P(A∩B')+P(A∩B)][P(A∩B')+P(A'∩B')] P(A∩B')²+P(A∩B')P(A∩B)+P(A∩B')P(A'∩B)+P(A∩B')P(A'∩B') ≟ P(A∩B')²+P(A∩B')P(A'∩B')+P(A∩B')P(A∩B)+P(A∩B)P(A'∩B') So to prove that, we take P(A∩B')P(A'∩B) = P(A∩B)P(A'∩B') same as P(A∩B)P(A'∩B') = P(A∩B')P(A'∩B), proved above and add P(A∩B')²+P(A∩B')P(A∩B)+P(A∩B')P(A'∩B') to both sides: P(A∩B')P(A'∩B)+P(A∩B')²+P(A∩B')P(A∩B)+P(A∩B')P(A'∩B') = P(A∩B)P(A'∩B')+P(A∩B')²+P(A∩B')P(A∩B)+P(A∩B')P(A'∩B') P(A∩B')²+P(A∩B')P(A∩B)+P(A∩B')P(A'∩B)+P(A∩B')P(A'∩B') = P(A∩B')²+P(A∩B')P(A'∩B')+P(A∩B')P(A∩B)+P(A∩B)P(A'∩B') rearrange to reverse the above steps P(A∩B')[P(A∩B')+P(A∩B)+P(A'∩B)+P(A'∩B')] = [P(A∩B')+P(A∩B)][P(A∩B')+P(A'∩B')] since P(A∩B')+P(A∩B)+P(A'∩B)+P(A'∩B') = 1 P(A∩B')*1 = [P(A∩B')+P(A∩B)][P(A∩B')+P(A'∩B')] P(A∩B') = P(A)P(B') which is what we had to prove. Edwin