Here are all 36 possible dice rolls: (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) -------------------------------------------------------- Since we are given that the dice land on different numbers, we reduce the sample space by eliminating all the cases where the numbers are the same, so we only have this reduced sample space of 30 dice rolls. -------------------------------------------------------- (1,2) (1,3) (1,4) (1,5) (1,6) (2,1) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,5) (4,6) (5,1) (5,2) (5,3) (5,4) (5,6) (6,1) (6,2) (6,3) (6,4) (6,5) ------------------------------------------------- Now we'll color all the 3's red ------------------------------------------------- (1,2) (1,3) (1,4) (1,5) (1,6) (2,1) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,5) (4,6) (5,1) (5,2) (5,3) (5,4) (5,6) (6,1) (6,2) (6,3) (6,4) (6,5) ------------------------------------------------ Now count the red threes. I count 10. Did I color all the 3's red? So that's 10 out of 30. "Out of" means "over" so the probability is 10 over 30 oror . Edwin