A survey report states that 70% of adult women visit their doctors for a physical examination at least once in two years. If 20 adult women are randomly selected, find the probability that fewer than 14 of them have had a physical examination in the past two years.
There are several methods. I will explain the first 2.
1. By a cumulative prabability table.
2. By a TI-84 calculator
3. By a computer program
4. By formula calculation (so much calculation would make this method impractical, but not impossible)
1. Find this cumulative probability table headed "n=20" in your book, or the
website http://www.statisticshowto.com/tables/binomial-distribution-table/
from which I copied and pasted it. You must interpret the words
"fewer than 14" as "13 or fewer", go down the column headed by "p=0.7" to
the row with "x=13" and read 0.392 which I have colored red and underlined:
n=20
p
x 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0 0.358 0.122 0.039 0.012 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.736 0.392 0.176 0.069 0.024 0.008 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.925 0.677 0.405 0.206 0.091 0.035 0.012 0.004 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.984 0.867 0.648 0.411 0.225 0.107 0.044 0.016 0.005 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.997 0.957 0.830 0.630 0.415 0.238 0.118 0.051 0.019 0.006 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 1.000 0.989 0.933 0.804 0.617 0.416 0.245 0.126 0.055 0.021 0.006 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 1.000 0.998 0.978 0.913 0.786 0.608 0.417 0.250 0.130 0.058 0.021 0.006 0.002 0.000 0.000 0.000 0.000 0.000 0.000
7 1.000 1.000 0.994 0.968 0.898 0.772 0.601 0.416 0.252 0.132 0.058 0.021 0.006 0.001 0.000 0.000 0.000 0.000 0.000
8 1.000 1.000 0.999 0.990 0.959 0.887 0.762 0.596 0.414 0.252 0.131 0.057 0.020 0.005 0.001 0.000 0.000 0.000 0.000
9 1.000 1.000 1.000 0.997 0.986 0.952 0.878 0.755 0.591 0.412 0.249 0.128 0.053 0.017 0.004 0.001 0.000 0.000 0.000
10 1.000 1.000 1.000 0.999 0.996 0.983 0.947 0.872 0.751 0.588 0.409 0.245 0.122 0.048 0.014 0.003 0.000 0.000 0.000
11 1.000 1.000 1.000 1.000 0.999 0.995 0.980 0.943 0.869 0.748 0.586 0.404 0.238 0.113 0.041 0.010 0.001 0.000 0.000
12 1.000 1.000 1.000 1.000 1.000 0.999 0.994 0.979 0.942 0.868 0.748 0.584 0.399 0.228 0.102 0.032 0.006 0.000 0.000
13 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.994 0.979 0.942 0.870 0.750 0.583 0.392 0.214 0.087 0.022 0.002 0.000
14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.994 0.979 0.945 0.874 0.755 0.584 0.383 0.196 0.067 0.011 0.000
15 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.998 0.994 0.981 0.949 0.882 0.762 0.585 0.370 0.170 0.043 0.003
16 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.995 0.984 0.956 0.893 0.775 0.589 0.352 0.133 0.016
17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.996 0.988 0.965 0.909 0.794 0.595 0.323 0.075
18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.998 0.992 0.976 0.931 0.824 0.608 0.264
19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.988 0.961 0.878 0.642
20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
-----------------------
2. By TI-84 (or TI-83) calculator:
(You must also interpret the words "fewer than 14" as "13 or fewer")
Press 2ND
Press VARS
scroll down to binomcdf(
Press ENTER
[If you have the newer version, set trials at 20, p at 0.7, x value at 13,
highlight Paste, Press ENTER]
If you have the older version you must type in the missing parts of this
binomcdf(20,0,7,
13)
but with either version that's what you must have on your screen.
Press ENTER
Read .3919901882, which rounds to the 0.392 that you read from the table.
Edwin