6. Using the following distribution of scores and the standard deviation formula of: s = √∑(x-mean)˛/(n-1) where: s = standard deviation x = individual’s score n = number of scores fill in the missing values (worth 70 points): _ _ score deviation = (x – x) (x – x)˛ student 1: 55 __________________ _______ student 2: 60 __________________ _______ student 3: 62 __________________ _______ student 4: 43 __________________ _______ student 5: 100 __________________ _______ student 6: 90 __________________ _______ ------------------------------------------------------- ∑x = ____ n = ____ _ mean = x = _____ standard deviation = _____ ------------------------------------------------------ Add the scores and get ∑x = 410 Count the scores and get n = 6 _ Divide 410 by 6 and get mean = x = 68.33333333 Subtract this from each score to get the deviations _ x - x 55 - 68.33333333 = -13.33333333 60 - 68.33333333 = -8.33333333 62 - 68.33333333 = -6.33333333 43 - 68.33333333 = -25.33333333 100 - 68.33333333 = 31.66666667 90 - 68.33333333 = 21.66666667 _ Square each of those to get (x - x)˛ (-13.33333333)˛ = 177.7777778 (-8.33333333)˛ = 69.4444444 (-6.33333333)˛ = 40.1111111 (-25.33333333)˛ = 641.7777778 (31.66666667)˛ = 1002.7777778 (21.66666667)˛ = 469.4444444 _ Add those to get ∑(x - x)˛ = 2401.333333 Divide by n-1, that is, by 6-1 which is 5 Divide by 5 and that's the variance, s˛ = 480.2666667 Take the square root of the variance to find standard deviation = s = 21.91498726 Edwin