# SOLUTION: assuming that my null hypothesis is that males and females are equally likely to sign up for a stats course, my alternate hypothesis is that the probability of males signing up is

Algebra ->  Algebra  -> Probability-and-statistics -> SOLUTION: assuming that my null hypothesis is that males and females are equally likely to sign up for a stats course, my alternate hypothesis is that the probability of males signing up is       Log On

 Ad: Algebra Solved!™: algebra software solves algebra homework problems with step-by-step help! Ad: Algebrator™ solves your algebra problems and provides step-by-step explanations!

 Algebra: Probability and statistics Solvers Lessons Answers archive Quiz In Depth

 Question 399141: assuming that my null hypothesis is that males and females are equally likely to sign up for a stats course, my alternate hypothesis is that the probability of males signing up is 0.3, alpha is set at 0.05 and n is 25. i need to find the critical value of y as well as beta, how do i do this i am so stuck?Found 2 solutions by stanbon, robertb:Answer by stanbon(57246)   (Show Source): You can put this solution on YOUR website!Assuming that my null hypothesis is that males and females are equally likely to sign up for a stats course, my alternate hypothesis is that the probability of males signing up is 0.3, alpha is set at 0.05 and n is 25. i need to find the critical value of y as well as beta, how do i do this i am so stuck? ----------------------- Well, that's a bit confusing. If Ho is p(m)-p(f) = 0 then Ha should be p(m)-p(f) is not 0 ----- It appears that a sample 25 people was taken and 30% of them were males. Based on alpha being 5% and the fact that you are doing a 2-tail test, the critical values are z = +-1.96. ----- Cheers, Stan H. ---- Answer by robertb(4012)   (Show Source): You can put this solution on YOUR website!: or () : Since n = 25 it is small-sampling, and you have to use the t-test. Use the statistic Now use any t-distribution table to find the critical value, keeping in mind that df = n - 1 = 25 - 1 = 24. The false-negative rate is the probability of a Type II error (accepting a false null hypothesis). Now suppose the critical value that you got for the t-test above is . To compute for , calculate . --------------------------------------------------------------------------------- --------------------------------------------------------------------------------- : p = 0.50 : p < 0.50 to 6 decimal places, while to 6 decimal places. Hence the critical value for a 1-sided test with is . The rejection region is then , and the acceptance region is . The test statistic is x = n*p = 25*0.30 = 7.5. Thus we reject the null hypothesis, and conclude that the ratio is less than 0.50. , or I hope you don't change your mind again....