# SOLUTION: A binomial probability distribution has n = 15 trials with the probability of success on each trial is p = .65. Calculate the following. a. The mean, <font face = "symbol">m</fo

Algebra ->  Algebra  -> Probability-and-statistics -> SOLUTION: A binomial probability distribution has n = 15 trials with the probability of success on each trial is p = .65. Calculate the following. a. The mean, <font face = "symbol">m</fo      Log On

 Ad: Algebra Solved!™: algebra software solves algebra homework problems with step-by-step help! Ad: Algebrator™ solves your algebra problems and provides step-by-step explanations!

 Algebra: Probability and statistics Solvers Lessons Answers archive Quiz In Depth

 Click here to see ALL problems on Probability-and-statistics Question 354696: A binomial probability distribution has n = 15 trials with the probability of success on each trial is p = .65. Calculate the following. a. The mean, m, of the distribution b. The standard deviation s, of the distribution c. The probability of 10 successes d. The probability of 10 failures e. The probability of at least 14 successes Found 2 solutions by stanbon, Edwin McCravy:Answer by stanbon(57967)   (Show Source): You can put this solution on YOUR website!A binomial probability distribution has n = 15 trials with the probability of success on each trial is p = .65. Calculate the following. a. The mean,, of the distribution:np b. The standard deviation of the distribution:sqrt(npq) c. The probability of 10 successes: binompdf(15,0.65,10) d. The probability of 10 failures: binompdf(15,0.35,10) e. The probability of at least 14 successes: 1 - binomcdf(15,0.65,13) ==================== I use a TI-84 calculator. =========== cheers, Stan H. Answer by Edwin McCravy(8999)   (Show Source): You can put this solution on YOUR website!A binomial probability distribution has n = 15 trials with the probability of success on each trial is p = .65. ``` , Calculate the following. a. The mean, m, of the distribution b. The standard deviation s, of the distribution c. The probability of (exactly) 10 successes d. The probability of 10 failures That's the same as exactly 5 successes. Change x to 5 e. The probability of at least 14 successes P(14 or 15) = P(14) + P(15) Edwin```