SOLUTION: Consider the random experiment of tossing two fair dice and recording the up faces. Let X be the sum of the two dice, and let Y be the absolute value of the difference of the two d

Algebra.Com
Question 1199109: Consider the random experiment of tossing two fair dice and recording the up faces. Let X be the sum of the two dice, and let Y be the absolute value of the difference of the two dice. 1.what is the probability function of Y?
2.What is the cumulative distribution function of Y?

Answer by Edwin McCravy(20056)   (Show Source): You can put this solution on YOUR website!
There are 36 way a pair of dice can fall:

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
 
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
 
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 
 
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 
 
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
 
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

for x=0, the rolls with absolute difference 0 are these 6: 
(1,1), (2,2), (3,3), (4,4), (5,5), (6,6).  so P(0) = 6/36 = 1/6. 

for x=1, the rolls with absolute difference 1 are these 10: 
(1,2), (2,3), (3,4), (4,5), (5,6), (2,1), (3,2), (4,3), (5,3), (6,5).  
So P(1) = 10/36 = 5/18.

for x=2, the rolls with absolute difference 2 are these 8: 
(1,3), (2,4), (3,5), (4,6), (6,4), (5,3), (4,2), (3,1).  
So P(2) = 10/36 = 5/18.

for x=3, the rolls with absolute difference 3 are these 6: 
(1,4), (2,5), (3,6), (4,1), (5,2), (4,1).  
So P(3) = 6/36 = 1/6.

for x=4, the rolls with absolute difference 4 are these 4: 
(1,5), (2,6), (5,1), (6,2).  
So P(4) = 4/36 = 1/9.

for x=5, the rolls with absolute difference 5 are these 2: 
(1,6), (1,6).  
So P(5) = 2/36 = 1/18.

So the probability function of Y is 

  x   P(x) 
  0   6/36 = 1/6 
  1  10/36 = 5/18
  2   8/36 = 2/9
  3   6/36 = 1/6
  4   4/36 = 1/9
  5   2/36 = 1/18
-----------------
     36/36 = 1

The cumulative distribution function is found by accumulating
value plus the sum of the values before it.
  x   CP(x) 
  0   6/36 = 1/6 
  1   6/36+10/36 = 16/36 = 4/9 
  2   8/36+6/36+8/36 = 22/36 = 11/18
  3   6/36+8/36+6/36+6/36 = 26/39 = 2/3
  4   6/36+8/36+6/36+10/36+4/36 = 34/36 = 17/18
  5   6/36+8/36+6/36+10/36+4/36+2/36 = 36/36 = 1
-----------------
     36/36 = 1

Edwin

RELATED QUESTIONS

Let X denote the random variable that gives the sum of the faces that fall uppermost when (answered by solver91311)
an experiment consist of tossing two ordinary dice and adding the two numbers. determine... (answered by Fombitz)
Two fair dice are tossed. What is the probability that the sum of the top two faces is... (answered by ewatrrr)
1. A random experiment consists of drawing a single card from a well-shuffled deck and... (answered by ikleyn)
5. A random experiment consists of tossing three fair coins and recording whether each... (answered by Boreal)
by throwing 2 fair dice, what is the probability of getting two same faces when you get... (answered by ikleyn)
An experiment consists of rolling two fair​ (not weighted) dice and adding the dots on... (answered by ikleyn,greenestamps)
Nonstandard dice can produce interesting distributions of outcomes. You have two... (answered by stanbon)
Nonstandard dice can produce interesting distributions of outcomes. You have two... (answered by edjones)