SOLUTION: Find the area of the shaded region. The graph to the right depicts IQ scores of adults, and those scores are normally distributed with a mean of 100 and a standard deviation of
Algebra.Com
Question 1183224: Find the area of the shaded region. The graph to the right depicts IQ scores of adults, and those scores are normally distributed with a mean of 100 and a standard deviation of 15.
Click to view page 1 of the table.LOADING... Click to view page 2 of the table.LOADING...
A graph with a bell-shaped curve, divided into 3 regions by 2 lines from top to bottom, one on the left side and one on the right side. The region between the lines is shaded. Moving from left to right, the x-axis below the first line is labeled 80. The x-axis below the second line is labeled 105.
The area of the shaded region is
Answer by Boreal(15235) (Show Source): You can put this solution on YOUR website!
between 80 and 105 is z=(80-100)/15=-20/15 or -1.33 and z=(105-100)/15=+0.33
that area is 0.5393
Can do on calculator 2ndVARS2ENTER(80,105,100,15)ENTER
RELATED QUESTIONS
Find the area of the shaded region. The graph to the right depicts IQ scores of... (answered by Alan3354)
Find the area of the shaded region. The graph to the right depicts IQ scores of adults,... (answered by MathLover1)
Flag
Find the area of the shaded region. The graph to the right depicts IQ scores of... (answered by ikleyn)
Find the indicated IQ score. The graph to the right depicts IQ of adults, and those... (answered by Boreal)
Find the indicated IQ score. The graph to the right depicts IQ scores of adults, and... (answered by Theo)
Find the area of the shaded region. The graph depicts IQ scores of adults, and those... (answered by rothauserc)
IQ scores of adults are normally distributed with a mean of 100 and a standard deviation... (answered by stanbon,ewatrrr)
Suppose that IQ scores are normally disributed with means = 100 and standard deviation =... (answered by robertb)
Adult IQ scores are normally distributed with a mean of 100 and a standard deviation of... (answered by Boreal)