SOLUTION: The probability that an employs at a company is female is.36. The probability that an employee is female and married is .19. Find the conditional probability that a randomly select

Algebra.Com
Question 1152080: The probability that an employs at a company is female is.36. The probability that an employee is female and married is .19. Find the conditional probability that a randomly selected employee from this company is married given that she is female.
Answer by ikleyn(52779)   (Show Source): You can put this solution on YOUR website!
.

By the definition of the conditional probability, in this case 


    the conditional probability that a randomly selected employee from this company is married given that she is female


    is equal to the ratio of the probability that an employee is female and married (which is 0.19)

    to the probability that an employee at a company is female (which is 0.36).



Therefore, the ANSWER to the problem's question is


    P =  = 0.527778.

Solved.

-----------------

On conditional probability, see the lessons
    - Conditional probability problems
    - More conditional probability problems
in this site.


RELATED QUESTIONS

The probability that an employee at a company eats lunch at the company cafeteria is... (answered by stanbon)
The probability that an employee at a company eats lunch at the company cafeteria is... (answered by Edwin McCravy)
Good day. please help me solve this problem. The table below lists the distribution of... (answered by Edwin McCravy,ikleyn)
Of a company's employee 35%are women and 8% are married women . suppose an employee is... (answered by stanbon)
A company applying for medical aid cover counts that 70 of its 140 male employees smoke.... (answered by ikleyn)
Of 350 male and 280 female employees at the home office of Gibraltar Insurance Company,... (answered by ikleyn)
A company wanted to determine what percentage of its employees stayed for at least 1, 2, (answered by Theo)
Of 1000 employees in a company, 250 are males and 750 are females. A total of 200 of the... (answered by stanbon)
According to an insurance company,the probability that females die before 80 is 0.40 and... (answered by Fombitz)