Note: These are samples of size n=2 so we divide by n-1 = 2-1 or 1, not n=2 sample means variances ------------------------------------------------------------------ 1,1 (1+1)/2 = 1.0 [(1-1.0)²+(1-1.0)²]/1 = 0.0/1 = 0.0 1,2 (1+2)/2 = 1.5 [(1-1.5)²+(2-1.5)²]/1 = 0.5/1 = 0.5 1,3 (1+3)/2 = 2.0 [(1-2.0)²+(3-2.0)²]/1 = 2.0/1 = 2.0 1,4 (1+4)/2 = 2.5 [(1-2.5)²+(4-2.5)²]/1 = 4.5/1 = 4.5 1,5 (1+5)/2 = 3.0 [(1-3.0)²+(5-3.0)²]/1 = 8.0/1 = 8.0 2,1 (2+1)/2 = 1.5 [(2-1.5)²+(1-1.5)²]/1 = 0.5/1 = 0.5 2,2 (2+2)/2 = 2.0 [(2-2.0)²+(2-2.0)²]/1 = 0.0/1 = 0.0 2,3 (2+3)/2 = 2.5 [(2-2.5)²+(3-2.5)²]/1 = 0.5/1 = 0.5 2,4 (2+4)/2 = 3.0 [(2-3.0)²+(4-3.0)²]/1 = 2.0/1 = 2.0 2,5 (2+5)/2 = 3.5 [(2-3.5)²+(5-3.5)²]/1 = 4.5/1 = 4.5 3,1 (3+1)/2 = 2.0 [(3-2.0)²+(1-2.0)²]/1 = 2.0/1 = 2.0 3,2 (3+2)/2 = 2.5 [(3-2.5)²+(2-2.5)²]/1 = 0.5/1 = 0.5 3,3 (3+3)/2 = 3.0 [(3-3.0)²+(3-3.0)²]/1 = 0.0/1 = 0.0 3,4 (3+4)/2 = 3.5 [(3-3.5)²+(4-3.5)²]/1 = 0.5/1 = 0.5 3,5 (3+5)/2 = 4.0 [(3-4.0)²+(5-4.0)²]/1 = 2.0/1 = 2.0 4,1 (4+1)/2 = 2.5 [(4-2.5)²+(1-2.5)²]/1 = 4.5/1 = 4.5 4,2 (4+2)/2 = 3.0 [(4-3.0)²+(2-3.0)²]/1 = 2.0/1 = 2.0 4,3 (4+3)/2 = 3.5 [(4-3.5)²+(3-3.5)²]/1 = 0.5/1 = 0.5 4,4 (4+4)/2 = 4.0 [(4-4.0)²+(4-4.0)²]/1 = 0.0/1 = 0.0 4,5 (4+5)/2 = 4.5 [(4-4.5)²+(5-4.5)²]/1 = 0.5/1 = 0.5 5,1 (5+1)/2 = 3.0 [(5-3.0)²+(1-3.0)²]/1 = 8.0/1 = 8.0 5,2 (5+2)/2 = 3.5 [(5-3.5)²+(2-3.5)²]/1 = 4.5/1 = 4.5 5,3 (5+3)/2 = 4.0 [(5-4.0)²+(3-4.0)²]/1 = 2.0/1 = 2.0 5,4 (5+4)/2 = 4.5 [(5-4.5)²+(4-4.5)²]/1 = 0.5/1 = 0.5 5,5 (5+5)/2 = 5.0 [(5-5.0)²+(5-5.0)²]/1 = 0.0/1 = 0.0 ------------------------------------------------------------------ sum = 50.0 There are 25 samples, so mean of variances = 50.0/25 = 2 Population: 1,2,3,4,5 The mean of the population is m = (1+2+3+4+5)/5 = 15/5 = 3 Note: Since this is a population, we will divide by n=5, (not n-1): x (x-m)² --------------- 1 (1-3)² = 4 2 (2-3)² = 1 3 (3-3)² = 0 4 (4-3)² = 1 5 (5-3)² = 4 --------------- 5)10 --- 2 = variance of population So they are the same, both 2. Edwin