Using only the digits 0,1,2,3, write down all possible three digit numbers with sum of digits 3, allowing numbers to begin with 0, in order from largest to smallest: 300 210 201 120 111 102 030 021 012 003 in each, use the digits of each 3-digit number in the order they appear as exponents of a, b, and c respectively, as this scheme shows: 300 --> a3b0c0 = a³ 210 --> a2b1c0 = a²b 201 --> a2b0c1 = a²c 120 --> a1b2c0 = ab² 111 --> a1b1c1 = abc 102 --> a1b0c2 = ac² 030 --> a0b3c0 = b³ 021 --> a0b2c1 = b²c 012 --> a0b1c2 = bc² 003 --> a0b0c3 = c³ Rewrite the dividend a³+b³+c³-3abc putting in zero place-holders for each of those not represented in that dividend, in that order. That is, the dividend becomes: a³ + 0a²b + 0a²c + 0ab² - 3abc + 0ac² + b³ + 0b²c + 0bc² + c³ So we start with this: _______________________________________________________________ a + b + c)a³ + 0a²b + 0a²c + 0ab² - 3abc + 0ac² + b³ + 0b²c + 0bc² + c³ Then we divide a³ by a, getting a², and we write that as the 1st term of the quotient. a² a + b + c)a³ + 0a²b + 0a²c + 0ab² - 3abc + 0ac² + b³ + 0b²c + 0bc² + c³ Then we multiply that by each term of the divisor and place each product under the term that it is like, and draw a line under it: a² a + b + c)a³ + 0a²b + 0a²c + 0ab² - 3abc + 0ac² + b³ + 0b²c + 0bc² + c³ a³ + a²b + a²c Then we subtract and bring EVERY term down a² a + b + c)a³ + 0a²b + 0a²c + 0ab² - 3abc + 0ac² + b³ + 0b²c + 0bc² + c³ a³ + a²b + a²c -a²b - a²c + 0ab² - 3abc + 0ac² + b³ + 0b²c + 0bc² + c³ Then we divide -a²b by a, getting -ab, and we write that as the 2nd term of the quotient: a² - ab a + b + c)a³ + 0a²b + 0a²c + 0ab² - 3abc + 0ac² + b³ + 0b²c + 0bc² + c³ a³ + a²b + a²c -a²b - a²c + 0ab² - 3abc + 0ac² + b³ + 0b²c + 0bc² + c³ Then we multiply that by each term of the divisor and place each product under the term that it is like, and draw a line under it, subtract and bring EVERY term down: a² - ab a + b + c)a³ + 0a²b + 0a²c + 0ab² - 3abc + 0ac² + b³ + 0b²c + 0bc² + c³ a³ + a²b + a²c -a²b - a²c + 0ab² - 3abc + 0ac² + b³ + 0b²c + 0bc² + c³ -a²b - ab² - abc -a²c + ab² - 2abc + 0ac² + b³ + 0b²c + 0bc² + c³ Keep doing that, and end up with this: a² - ab - ac + b² - bc + c² a + b + c)a³ + 0a²b + 0a²c + 0ab² - 3abc + 0ac² + b³ + 0b²c + 0bc² + c³ a³ + a²b + a²c -a²b - a²c + 0ab² - 3abc + 0ac² + b³ + 0b²c + 0bc² + c³ -a²b - ab² - abc -a²c + ab² - 2abc + 0ac² + b³ + 0b²c + 0bc² + c³ -a²c - abc - ac² ab² - abc + ac² + b³ + 0b²c + 0bc² + c³ ab² + b³ + b²c - abc + ac² - 0b³ - b²c + 0bc² + c³ - abc - b²c - bc² ac² - 0b³ + 0b²c + bc² + c³ ac² + bc² + c³ 0 So the answer is: a² - ab - ac + b² - bc + c² Edwin