(t4 − 2t² + 4t − 5) ÷ (t² − 3) Put in terms with 0 coefficients for place holders: (t4 + 0t³ - 2t² + 4t - 5) ÷ (t² + 0t - 3) ________________________ t² + 0t - 3)t4 + 0t³ - 2t² + 4t - 5 Divide t4 ÷ t² = t² so put that above the line above the - 3t² t² t² + 0t - 3)t4 + 0t³ - 2t² + 4t - 5 Multiply the t² times the t² + 0t - 3, t²(t² + 0t - 3) = t4 + 9t³ - 3t² and put that under the corresponding terms and draw a line underneath: t² t² + 0t - 3)t4 + 0t³ - 2t² + 4t - 5 t4 + 0t³ - 3t² Now subtract (t4 + 0t³ - 2t²) - (t4 + 0t³ - 3t²) = t4 + 0t³ - 2t² - t4 - 0t³ + 3t² = 0t³ + t². Put that below the line and bring down the next term + 4t: t² t² + 0t - 3)t4 + 0t³ - 2t² + 4t - 5 t4 + 0t³ - 3t² 0t³ + t² + 4t Divide 0t³ ÷ t² = 0t so put that above the line above the + 4t t² + 0t t² + 0t - 3)t4 + 0t³ - 2t² + 4t - 5 t4 + 0t³ - 3t² 0t³ + t² + 4t Multiply the 0t times the t² + 0t - 3, 0t(t² + 0t - 3) = 0t³ + 0t² + 0t and put that under the corresponding terms and draw a line underneath: t² + 0t t² + 0t - 3)t4 + 0t³ - 2t² + 4t - 5 t4 + 0t³ - 3t² 0t³ + t² + 4t 0t³ + 0t² + 0t Now subtract (0t³ + t² + 4t) - (0t³ + 0t³ - 3t²) = 0t³ + t³ + 4t - 0t³ + 0t² + 0t = t³ + 4t. Put that below the line and bring down the next (last) term - 5: t² + 0t t² + 0t - 3)t4 + 0t³ - 2t² + 4t - 5 t4 + 0t³ - 3t² 0t³ + t² + 4t 0t³ + 0t² + 0t t² + 4t - 5 Divide t² ÷ t² = 1 so put that above the line above the - 5 t² + 0t + 1 t² + 0t - 3)t4 + 0t³ - 2t² + 4t - 5 t4 + 0t³ - 3t² 0t³ + t² + 4t 0t³ + 0t² + 0t t² + 4t - 5 Multiply the 1 times the t² + 0t - 3, 1(t² + 0t - 3) = t³ + 0t - 3 and put that under the corresponding terms and draw a line underneath: t² + 0t + 1 t² + 0t - 3)t4 + 0t³ - 2t² + 4t - 5 t4 + 0t³ - 3t² 0t³ + t² + 4t 0t³ + 0t² + 0t t² + 4t - 5 t³ + 0t - 3 Now subtract (t² + 4t - 5) - (t² + 0t - 3) = t² + 4t - 5 - t² - 0t² + 3 = 4t - 2. Put that below the line t² + 0t + 1 t² + 0t - 3)t4 + 0t³ - 2t² + 4t - 5 t4 + 0t³ - 3t² 0t³ + t² + 4t 0t³ + 0t² + 0t t² + 4t - 5 t³ + 0t - 3 4t - 2 There are no more terms to bring down, so we are done with the dividion, and are ready to write the answer: We use the formula Answer = QUOTIENT +t² + 0t + 1 + Now we can drop the 0 terms: t² + 1 + Edwin