SOLUTION: (3x^4 + 11x^3 + 19x^2 - 16)divided by (3x + 5)

Algebra.Com
Question 399952: (3x^4 + 11x^3 + 19x^2 - 16)divided by (3x + 5)
Answer by CharlesG2(834)   (Show Source): You can put this solution on YOUR website!
(3x^4 + 11x^3 + 19x^2 - 16)divided by (3x + 5)

....................x^3 + 2x^2 + 3x - 5
3x + 5 --> 3x^4 + 11x^3 + 19x^2 + 0x - 16
...........3x^4 + 5x^3
...................6x^3 + 19x^2
...................6x^3 + 10x^2
...........................9x^2 + 0x
...........................9x^2 +15x
................................-15x - 16
................................-15x - 25
........................................9
answer is x^3 + 2x^2 + 3x - 5 + 9/(3x + 5)
check:
(3x + 5)(x^3 + 2x^2 + 3x - 5 + 9/(3x + 5))
(3x + 5)x^3 + (3x + 5)2x^2 + (3x + 5)3x - (3x + 5)5 + (3x + 5)9/(3x + 5)
3x^4 + 5x^3 + 6x^3 + 10x^2 + 9x^2 + 15x - 15x - 25 + 9
3x^4 + 11x^3 + 19x^2 - 16, yes


RELATED QUESTIONS

3x^2-11x-4/x^2-16 divided by... (answered by jsmallt9)
Divide using synthetic division. (3x^4+11x^3-20x^2+7x+35) divided by (x+5) (answered by Theo)
10x^2-3x-11 divided by... (answered by Fombitz)
3x^2-19x+16=0 (answered by scott8148)
1)3x^2-19x+6 2) 2x^2+11x-4 3)5x^2-13x-6 Need help factoring, not... (answered by ewatrrr)
Divide using long division: 6x^3 + 19x^2 + x - 10 / 3x^2 - 11x - 6 + -4/2x -... (answered by vleith)
How do you solve? {{{(3x^2-14x+15)/(7x^2-19x-6)}}} divided by... (answered by edjones)
{{{ (3x^3-19x^2+27x+4) / (x-4)}}}={{{ (3x^3-19x^2+27x+4) /... (answered by oscargut)
find the zeros of the following polynomial... (answered by solver91311)