(x³ + 2x² - 3x + 2) ÷ (x + 1) You need to review how to do long division. x² + x - 4 +x + 1)x³ + 2x² - 3x + 2 x³ + x² x² - 3x x² + x -4x + 2 -4x - 4 6 Answer: x² + x - 4 + To check: Substitute 1 and 0 in original and in answer Substitute 1 in the original: (x³ + 2x² - 3x + 2) ÷ (x + 1) ((1)³ + 2(1)² - 3(1) + 2) ÷ ((1) + 1) ((1) + 2(1) - 3(1) + 2) ÷ ((1) + 1) (1 + 2 - 3 + 2) ÷ (1 + 1) 2 ÷ 2 1 ---------------------------------- Substitute 1 in answer: x² + x - 4 + (1)² + (1) - 4 + 1 + 1 - 4 + -2 + -2 + 3 1 --------------------------- Substitute 0 in the original: (x³ + 2x² - 3x + 2) ÷ (x + 1) ((0)³ + 2(0)² - 3(0) + 2) ÷ ((0) + 1) ((0) + 2(0) - 0 + 2) ÷ ((0) + 1) (0 + 0 - 0 + 2) ÷ (0 + 1) 2 ÷ 1 2 ---------------------------------- Substitute 0 in answer: x² + x - 4 + (0)² + (0) - 4 + 0 + 0 - 4 + -4 + -4 + 6 2 --------------- So we get 1 when we substitute 1 in both the original and the answer, and we get 2 when we substitute 0 in both the original and the answer, so that shows that this is very likely the correct answer. Edwin