Multiply the 4 by the 10, getting 40 Write down all the products of two integers which gives +40 40*1 20*2 10*4 8*5 Now out beside all those write their sum, since +40 is positive. (If it had been negative we would have found their difference) 40*1 40-1 = 39 20*2 20-2 = 18 10*4 10-4 = 6 8*5 8-5 = 3 Notice that the coefficient of the middle term, 9, in absolute value, does not appear in the column of differences above. Therefore the trinomial does not factor. Edwin
Solved by pluggable solver: Factoring using the AC method (Factor by Grouping) | |||||||||||||||||||||||||||
Looking at the expression Now multiply the first coefficient Now the question is: what two whole numbers multiply to To find these two numbers, we need to list all of the factors of Factors of 1,2,4,5,8,10,20,40 -1,-2,-4,-5,-8,-10,-20,-40 Note: list the negative of each factor. This will allow us to find all possible combinations. These factors pair up and multiply to 1*40 = 40 2*20 = 40 4*10 = 40 5*8 = 40 (-1)*(-40) = 40 (-2)*(-20) = 40 (-4)*(-10) = 40 (-5)*(-8) = 40 Now let's add up each pair of factors to see if one pair adds to the middle coefficient
From the table, we can see that there are no pairs of numbers which add to =============================================================== Answer: So So |