First write the problem out in long division form
_________________
2x-1 | 8x^3+4x^2-px+6
Now ask yourself: what must you multiply 2x by to get 8x^3? The answer is 4x^2. Place this above the x^2 term
_______4x^2__________
2x-1 | 8x^3+4x^2-px+6
Multiply 4x^2 by 2x-1 to get 8x^2-4x^2 and place that beneath the first two terms
_______4x^2__________
2x-1 | 8x^3+4x^2-px+6
8x^3-4x^2
Subtract the bottom expression 8x^3-4x^2 from the top expression 8x^3+4x^2 to get 8x^2 and bring down the rest of the terms.
_______4x^2__________
2x-1 | 8x^3+4x^2-px+6
8x^3-4x^2
---------
8x^2-px+6
This is where we start back from the beginning and ask: what expression can you multiply 2x by to get 8x^2? The answer is 4x. Place this above the -px term
_______4x^2+4x__________
2x-1 | 8x^3+4x^2-px+6
8x^3-4x^2
---------
8x^2-px+6
Multiply 4x by 2x-1 to get 8x^2-4x. Place this underneath 8x^2-px+6
_______4x^2+4x__________
2x-1 | 8x^3+4x^2-px+6
8x^3-4x^2
---------
8x^2-px+6
8x^2-4x
---------
Subtract 8x^2-4x from 8x^2-px+6
_______4x^2+4x__________
2x-1 | 8x^3+4x^2-px+6
8x^3-4x^2
---------
8x^2-px+6
8x^2-4x
---------
-px+4x+6
Combine like terms.
_______4x^2+4x__________
2x-1 | 8x^3+4x^2-px+6
8x^3-4x^2
---------
8x^2-px+6
8x^2-4x
---------
(-p+4)x+6
Now onto the final stage: what expression must you multiply 2x by to get (-p+4)x? The answer is (1/2)(-p+4). Write this above the last term 6
_______4x^2+4x+(1/2)(-p+4)__________
2x-1 | 8x^3+4x^2-px+6
8x^3-4x^2
---------
8x^2-px+6
8x^2-4x
---------
(-p+4)x+6
Multiply (1/2)(-p+4) by 2x-1 to get (-p+4)x-(1/2)(-p+4)
_______4x^2+4x+(1/2)(-p+4)__________
2x-1 | 8x^3+4x^2-px+6
8x^3-4x^2
---------
8x^2-px+6
8x^2-4x
---------
(-p+4)x+6
(-p+4)x-(1/2)(-p+4)
--------------
Subtract the terms and distribute.
_______4x^2+4x+(1/2)(-p+4)__________
2x-1 | 8x^3+4x^2-px+6
8x^3-4x^2
---------
8x^2-px+6
8x^2-4x
---------
(-p+4)x+6
(-p+4)x-(1/2)(-p+4)
--------------
6-(1/2)p+2
Combine like terms.
_______4x^2+4x+(1/2)(-p+4)__________
2x-1 | 8x^3+4x^2-px+6
8x^3-4x^2
---------
8x^2-px+6
8x^2-4x
---------
(-p+4)x+6
(-p+4)x-(-p+4)
--------------
8-(1/2)p
So the remainder is 8-(1/2)p. But we're given that the remainder is 3. So this means that 8-(1/2)p=3 and its solution is p=10.
So the value of p is
So dividing the polynomial by will give you some quotient with a remainder of 3.