SOLUTION: Just a random question: "Originally a rectangle was twice as long as it was wide. When 4 m were added to its length and 3 m subtracted from its width, the resulting rectangle had

Algebra.Com
Question 250847: Just a random question: "Originally a rectangle was twice as long as it was wide. When 4 m were added to its length and 3 m subtracted from its width, the resulting rectangle had an area of 600 m (squared). Find the dimensions of the new rectangle."
Answer by scott8148(6628)   (Show Source): You can put this solution on YOUR website!
(2x + 4) (w - 3) = 600

2w^2 - 2w - 612 = 0 ___ w^2 - w - 306 = 0

(w + 17) (w - 18) = 0 ___ w = 18

L = 2w + 4 = 40

W = w - 3 = 15

RELATED QUESTIONS

Can you please solve this for me?: I have to solve this using factoring. Originally a (answered by stanbon)
Originally a rectangle was twice as long as it was wide. When 5m was subtracted from its... (answered by infinity9001)
originally a rectangle was three times as long as it was wide. when 2 cm were subtracted... (answered by josgarithmetic,ikleyn)
Originally a rectangle was twice as long as its wide. When 5 m was subtracted from its... (answered by stanbon,ewatrrr)
Originally a rectangle is three times as long as it was wide. when 2 centimeters... (answered by ankor@dixie-net.com)
a rectangle is twice as long as it is wide . if both its dimensions are increased 4 m ,... (answered by actuary)
A rectangle is twice as long as it is wide. If both of its dimensions are increased by 4... (answered by mananth)
Problem: Originally, a rectangle was three times as long as it is wide. When 2 cm were... (answered by jsmallt9,richwmiller)
a Reactangle is twice as long as it is wide. If its length and width are both dimentions... (answered by drk)