You have to put in placeholder zeros for the missing powers in both the divisor and the dividend, and deal with 0 placeholders all through the long division process. You have to writeas and you have to write as Then you write this: ------------------- x² + 0x + 1)3x³ + 0x² + 4x - 1 Divide getting and write this above the line in line with the 4x: 3x ------------------- x² + 0x + 1)3x³ + 0x² + 4x - 1 Now multiply 3x by x² + 0x + 1, getting 3x³ + 0x² + 3x, and write it below like this, keeping like powers of x lined up, then draw a line underneath. 3x ------------------- x² + 0x + 1)3x³ + 0x² + 4x - 1 3x³ + 0x² + 3x -------------- Now subtract (3x³ + 0x² + 4x) - (3x³ + 0x² + 3x) = 0x² + x. (Not you must keep the placeholder zero for the x² term: 3x ------------------- x² + 0x + 1)3x³ + 0x² + 4x - 1 3x³ + 0x² + 3x -------------- 0x² + x Now bring down the next (last) term -1: 3x ------------------- x² + 0x + 1)3x³ + 0x² + 4x - 1 3x³ + 0x² + 3x -------------- 0x² + x - 1 Next divide getting 0, so write + 0 on top above the -1: 3x + 0 ------------------- x² + 0x + 1)3x³ + 0x² + 4x - 1 3x³ + 0x² + 3x -------------- 0x² + x - 1 Multiply 0 by x² + 0x + 1 getting 0x² + 0x + 0 and write it at the bottom. Then draw a line: 3x + 0 ------------------- x² + 0x + 1)3x³ + 0x² + 4x - 1 3x³ + 0x² + 3x -------------- 0x² + x - 1 0x² + 0x + 0 ------------ Subtract: (0x² + x - 1) - (0x² + 0x + 0) = x - 1, so write that at the bottom: 3x + 0 ------------------- x² + 0x + 1)3x³ + 0x² + 4x - 1 3x³ + 0x² + 3x -------------- 0x² + x - 1 0x² + 0x + 0 ------------ x - 1 Now the final answer is gotten by adding the fraction to the quotient: Now we can drop the place holder zeros and get: Edwin