There are two cases. One case is when the three angles that are given congruent are adjacent (the first figure below), and the other case is when they are not (the second figure below. Mostly I will give only the steps. You must give the reasons.Case 1: Given: AB ≅ BC ≅ CD ≅ DE ≅ EA ∠A ≅ ∠B ≅ ∠E 1. Draw BE, BD and EC 2. AB ≅ BE (Given) 3. ᐃABE is isosceles 4. ∠ABE ≅ ∠AEB 5. ∠ABC ≅ ∠AED (Given) 6. m∠ABC - m∠ABE = m∠AED - m∠AEB 7. ∠CBE ≅ ∠DEB 8. BE ≅ BE 9. BC ≅ ED (Given) 10. ᐃBCE ≅ ᐃEDB SAS 11. BD ≅ EC 12. BC ≅ ED (Given) 13. CD ≅ CD 14. ᐃBCD ≅ ᐃEDC SSS 15. ∠BCD ≅ ∠EDC ------------------------------- Case 2. Given: AB ≅ BC ≅ CD ≅ DE ≅ EA ∠A ≅ ∠C ≅ ∠D 1. Draw BE, BD and EC 2. ∠BCD ≅ ∠EDC given 3. BC ≅ DE given 4. CD ≅ CD 5. ᐃBCD ≅ ᐃEDC SAS 6. BD ≅ EC 7. BC ≅ DE given 8. BE ≅ BE 9. ᐃBCE ≅ ᐃEDB 10. AB ≅ AE given 11. ᐃABE is isosceles 12. ∠ABE ≅ ∠AEB 13. ∠DBE ≅ ∠BEC 14. ∠CBD ≅ ∠DEC 15. m∠ABE + m∠DBE + m∠CBD = m∠AEB + m∠BEC + m∠DEC 16. ∠ABC ≅ ∠AED Edwin