To break a sum up into 4 parts in the ratio a:b:c:d a:b:c:d = ak:bk:ck:dk where k is not zero. ak+bk+ck+dk = sum k(a+b+c+d) = sum k = sum/(a+b+c+d) For our problem, a=1, b=2, c=3, d=4 The sum of the four interior angles of a quadrilateral is 360°, so sum = 360° k = 360°/(1+2+3+4) k = 360°/10 k = 36° ak = 1(36°) = 36° bk = 2(36°) = 72° ck = 3(36°) = 108° dk = 4(36°) = 144° Edwin