If you could tell the p's apart and the e's apart, the answer would be 6!. But since we can't, the 6! counts the same arrangement too many times, so we must divide by the number of ways the 3 p's can be rearranged and also by the number of ways the 2 e's can be rearranged so, we must divide by 3!×2! Answer= . After cancelling and multiplying, you get 60. You didn't ask for them, but here they all are in alphabetical order: 1. eepppr 2. eepprp 3. eeprpp 4. eerppp 5. epeppr 6. epeprp 7. eperpp 8. eppepr 9. epperp 10. eppper 11. epppre 12. epprep 13. epprpe 14. eprepp 15. eprpep 16. eprppe 17. ereppp 18. erpepp 19. erppep 20. erpppe 21. peeppr 22. peeprp 23. peerpp 24. pepepr 25. peperp 26. pepper <--- the original word 27. peppre 28. peprep 29. peprpe 30. perepp 31. perpep 32. perppe 33. ppeepr 34. ppeerp 35. ppeper 36. ppepre 37. pperep 38. pperpe 39. pppeer 40. pppere 41. pppree 42. ppreep 43. pprepe 44. pprpee 45. preepp 46. prepep 47. preppe 48. prpeep 49. prpepe 50. prppee 51. reeppp 52. repepp 53. reppep 54. repppe 55. rpeepp 56. rpepep 57. rpeppe 58. rppeep 59. rppepe 60. rpppee Edwin