Suppose the seven students are Ann Barbara Carl Doug Edith Jack Jill If it did not matter if Jack and Jill stood together, the answer would by 7! = 5040 ways. But since they cannot, we must subtract from that the number of ways they could stand together. That's either the number of permutations of these 6 "things": Ann Barbara Carlhttp://www.algebra.com/tutors/linear.solver?solver_action=plug Doug Edith Jack&Jill, with Jack next to Jill, Jack in front of Jill which is 6! or the number of permutations of these 6 "things": Ann Barbara Carl Doug Edith Jill&Jack, with Jill next to Jack, Jill in front of Jack which is also 6! Answer 7!-2×6! = 5040-2×720 = 5040-1440 = 3600 ways. Edwin