SOLUTION: Proof that the diagonals of a parallelogram bisect eachother
Algebra.Com
Question 513348: Proof that the diagonals of a parallelogram bisect eachother
Answer by solver91311(24713) (Show Source): You can put this solution on YOUR website!
Theorem If ABCD is a parallelogram, then prove that the diagonals of ABCD bisect each other.
Proof
Let the two diagonals be AC and BD and O be the intersection point.
We have to prove that O is the midpoint of AC and also the midpoint of BD.
Hence, and
We will prove using congruent triangles concept.
Consider two Triangles ABO and COD.
1. ....( Line AC is a transversal of the parallel lines AB and CD, hence alternate angles).
2. ....(Line BD is a transversal of the parallel lines AB and CD, hence alternate angles).
3. ....(Opposite angles when two lines intersect each other area equal)
From conditions 1,2 and 3
Triangle ABO is similar to triangle CDO (By Angle -Angle similar property)
Since Triangles are similar, Hence ratio of sides are equal from similar triangles property.
.........(4)
From theorem that Opposite sides of a parallelogram are equal,
..........(5)
From equation (4) and (5)
Similarly,
Hence, We conclude that AO = CO and BO = DO.
QED
John

My calculator said it, I believe it, that settles it
RELATED QUESTIONS
Prove that the diagonals of a parallelogram bisect each... (answered by Nate)
Prove that the diagonals of a parallelogram bisect each... (answered by Boreal,ikleyn)
how can i proof that diagonals bisect each other in a... (answered by gonzo)
How do you prove that the diagonals of a parallelogram bisect each... (answered by MathLover1,rothauserc)
How do I prove that diagonals of a parallelogram bisect each... (answered by scott8148)
Help me slove..." The diagonals of a parallelogram bisect each... (answered by bryanpark428)
show that the diagonals of a rectangle bisect each... (answered by MathLover1)
How to write a two column proof to show that the diagonals of a rhombus bisect the angles (answered by ewatrrr)
A parallelogram has coordinates O(0,0), A(7,1), B(4,5) and C(-3,4)
Use the midpoint... (answered by scianci)