SOLUTION: Find the sum
\frac{1}{7} + \frac{2}{7^2} + \frac{3}{7^3} + \frac{1}{7^4} + \frac{2}{7^5} + \frac{3}{7^6}
Algebra.Com
Question 1209811: Find the sum
\frac{1}{7} + \frac{2}{7^2} + \frac{3}{7^3} + \frac{1}{7^4} + \frac{2}{7^5} + \frac{3}{7^6}
Answer by CPhill(1959) (Show Source): You can put this solution on YOUR website!
Let $S = \frac{1}{7} + \frac{2}{7^2} + \frac{3}{7^3} + \frac{1}{7^4} + \frac{2}{7^5} + \frac{3}{7^6}$.
We can group the terms in sets of three:
$S = \left(\frac{1}{7} + \frac{2}{7^2} + \frac{3}{7^3}\right) + \left(\frac{1}{7^4} + \frac{2}{7^5} + \frac{3}{7^6}\right)$.
Let $A = \frac{1}{7} + \frac{2}{7^2} + \frac{3}{7^3}$.
Then $S = A + \frac{1}{7^3} A = A\left(1 + \frac{1}{7^3}\right)$.
We have $A = \frac{1}{7} + \frac{2}{49} + \frac{3}{343} = \frac{49}{343} + \frac{14}{343} + \frac{3}{343} = \frac{49+14+3}{343} = \frac{66}{343}$.
Then $S = \frac{66}{343}\left(1 + \frac{1}{343}\right) = \frac{66}{343}\left(\frac{343+1}{343}\right) = \frac{66}{343}\left(\frac{344}{343}\right) = \frac{66\cdot 344}{343\cdot 343} = \frac{22704}{117649}$.
We can also write
$S = \sum_{k=0}^1 \left( \frac{1}{7^{3k+1}} + \frac{2}{7^{3k+2}} + \frac{3}{7^{3k+3}} \right) = \sum_{k=0}^1 \frac{1 \cdot 7^2 + 2 \cdot 7 + 3}{7^{3k+3}} = \sum_{k=0}^1 \frac{49+14+3}{7^{3k+3}} = \sum_{k=0}^1 \frac{66}{7^{3k+3}}$.
$S = \frac{66}{7^3} + \frac{66}{7^6} = \frac{66}{343} + \frac{66}{117649} = \frac{66\cdot 343 + 66}{117649} = \frac{66(343+1)}{117649} = \frac{66(344)}{117649} = \frac{22704}{117649}$.
Final Answer: The final answer is $\boxed{\frac{22704}{117649}}$
RELATED QUESTIONS
Evaluate
2 + \frac{6}{7} +\frac {18}{49} + \frac{54}{343} + 1 + \frac{2}{14} +... (answered by josgarithmetic)
In class, we derived that
\frac{1}{n(n + 1)} = \frac{1}{n} - \frac{1}{n + 1}.
Fill in (answered by Edwin McCravy)
Number Theory
2.(2017 Putnam)Evaluate the sum
\[
\sum_{k=0}^{\infty} \left( 3\cdot... (answered by ikleyn)
Find all real numbers $a$ that satisfy
\frac{1}{a^3 + 7} -7 = -\frac{a^2}{a^3 +... (answered by yurtman)
Please help me solve this equation:... (answered by ikleyn,MathLover1)
Solve:... (answered by Solver92311,MathTherapy)
Simplify the expression
\frac{3}{\sqrt{2}} * \frac{1}{\sqrt{8}} *... (answered by mccravyedwin)
Evaluate \frac{3}{2} + \frac{5}{4} + \frac{9}{8} +... (answered by josgarithmetic,math_tutor2020)
Find all values of $a$ that satisfy the equation
\frac{a}{4} + 1 = \frac{a + 4}{a^2} +... (answered by yurtman)